

Research and Development Toward Saving Energy for Direct Air Capture With Available Cold Energy

PM: NORINAGA, Koyo Institute of Innovation for Future Society, Nagoya Univeristy

TEAM: Nagoya University, TOHO GAS, Tokyo University of Science, JGC, The University of Tokyo, Chukyo University

TOHO GAS IN TOKYO UNIVERSITY OF SCIENCE

Cryo-DAC®

A pressure swing amine process driven by the cryogenic pumping with LNG cold

Cryo-DAC®

Cryo-DAC®

Experiment

脱炭素社会創造センター

名古屋大学大学院工学研究科化学システム工学専攻

名古屋大学工学部マテリアル工学科

Cryo-DAC® our team

- Cryo-DAC® concept design
- High-performance amine development

 Process simulation for cost and energy analysis

JGC HOLDINGS CORPORATION

 Cryo-DAC plant design and construction

TOKYO UNIVERSITY OF SCIENCE

 Material selection and analysis

- Exergy-based process analysis
- Sensing device for stable operation

 Environmental and economic analysis

Cryo-DAC® liquid absorbent

Screening good amine/solvent mixtures by high throughput CO2 solubility measurements

Cryo-DAC® process simulation

CO ₂ recovery ratio*	73.0 %
CO ₂ purity	98.5 %

 \times CO₂ recovery ratio = $\frac{\text{Amount of CO}_2 \text{ recovered}}{\text{Amount of CO}_2 \text{ in the feed air}}$

Energy evaluation of DAC process by chemical absorption utilizing unused cold energy of LNG

(Toho Gas) *(Cor)Nakayama Yuki, (Cor)Kojima Misako, (Cor)Masuda Soichiro, (Cor)Tanaka Youichi, (Cor)Yabushita Masataka, (Cor)Koizumi Masahisa, (Nagoya U.) (Reg)Hirayama Mikiro, (Reg)Machida Hiroshi, (Reg)Umeda Yoshito, (Reg)

Cryo-DAC® thermal energy requirment

★MEA = monoethanolamine

Fasihi, M et al., J. Clean. Prod., 224, 957 (2019). Kiani, A et al., Front. Energy Res., 8, 92 (2020).

Cryo-DAC® Cost

Cryo-DAC® plant design

Cryo-DAC® Roadmap

Cryo-DAC® Perspective

LNG import share % (2021)

BP Statistical Review of World Energy 2022 | 71st edition

China	21.2
Japan	19.6
South Korea	12.4
India	6.5
Taiwan	5.2
Total Europe	21

Use liquid hydrogen coldness

Shell LNG Outlook 2022

Energy security, emissions and economic growth in Asia to drive future LNG demand

A direct air capture with LNG coldness Cryo-DAC® 7 goals

- 1. Develop good sorbents
- 2. Pursue an efficient use of LNG cold
- 3. Find suitable materials for construction
- 4. Develop sensing device for stable operation
- 5. Design & construct bench/pilot plants
- 6. Draw scenarios pleasing to our society
- 7. Offer a unique DAC to the world

Acknowledgement

