

Development of Global CO₂ Recycling Technology towards "Beyond-Zero" Emission

PM : Shigenori FUJIKAWA International Institute for Carbon-Neutral Energy Research, Kyushu University, Professor

PJ partner institutes:

Kumamoto Univ., Hokkaido Univ., Univ. Tokyo, Kagoshima Univ., Osaka Inst. Tech., Univ. Illinois at Urbana Champaign, Nanomembrane Tech. Inc.

Membrane thickness: 34 nm

About 1/300 the thinness of food wrap (thinner than COVID-19 virus!)

Approximately 20~30 times higher than the separation membrane performance reported so far

New carbon recycling society: resources from the air

The innovative separation nanomembranes with overwhelmingly high CO₂ permeability realizes CO2 capture directly from the atmosphere, which has been thought to be impossible until now. This membrane separation unit is integrated with an electrochemical or thermochemical CO₂ conversion unit to create the Direct Air Capture and Utilization (DAC-U) system, a continuous process from atmospheric CO₂ capture to carbon fuel production. The size-scalable DAC-U system will be distributed and deployed to contribute to the construction of a carbon-circulating society based on local production for local consumption.

"Moonshot for beyond Zero Emission Society"

CO₂ capture nanomembrane

highly CO₂ permeable nanomembrane

1000 times concentration

CO₂ conversion

Permeate gas : concentrated $CO_2 + N_2$, O_2 , Ar

CO₂ conversion under oxygen

Green fuel production from CO₂mixture gas

Target pilots for this project

Target developments

CO₂ capture unit from the atmosphere by membrane separation

• CO₂ conversion unit by electro- and thermo-chemistry

Electrochemical type: Use the point with no H₂ supply

,

Final target pilot
Small system with each unit integrated

Primary issues at the beginning of the project

- Is it possible to fabricate large-area nanomembranes for CO₂ separation?
- What kind of chemical products can be produced?
- Can CO₂ be converted from O₂ mixed gas as feed gas?

KPI for 2022

Select basic membrane materials that exhibit high CO₂ selectivity. Demonstrate conversion from CO₂ mixed gas to CO, CH₄, and C₂H₄

Organization

Realization of highly scalable and distributable CO₂ capture technology

Shigenori FUJIKAWA Masashi Kunitake Tomoyasu HIRAI Yoshiro KANEKO **Shin-Ichiro NORO** Toyoki KUNITAKE

(Kyushu Univ.) (Kumamoto Univ., Unit leader) (Osaka Inst. Tech.) (Kagoshima Univ.) (Hokkaido Univ.) (NanoMembrane Tech. Inc.)

CO₂ Capture Research Unit ~Membrane Performance Targets~.

CO₂ capture research unit

Approach of membrane preparation

Membrane structure: Thin film composite of CO₂ selective and support layers

- Support layer: Free-standing and highly gas permeable
- Selective layer: variety of CO₂ selective materials

Development step

1Support layer

 Development of silicone material with high CO₂ permeabilities

2Selective layer

Systematic exploring CO₂-philic materials
 →molecularly thin layer on a support layer

3 Controlled bonding of the selective layer to the supporting layer

4 Large area production of separation nanomembranes

Candidate Structures

- Low cross-linking
- High molecular weight

Improved CO₂ selectivity of separation nanomembranes

Selyanchyn O., Selyanchyn R., Fujikawa S. ACS Appl. Mater. Interfaces, 2020

World-leading membrane performance

Large area of separation nanomembrane

Roll-to-roll production of nanomembrane

CO₂: ca. 3600 GPU N₂: ca. 450 GPU O₂: ca. 780 GPU

Reasonable separation performance

further membrane thinning

Demonstration of CO₂ enrichment at module level

Production of carbon resources from CO₂ mixed gas separated by separation nanomembranes

1. Production of basic chemicals and fuels by electrochemical conversion

2. Production of C1 compounds by thermochemical conversion

DAC-U

Development of an electrochemical unit to produce carbon compounds from CO₂ mixed gas

Miho YAMAUCHI (Kyushu Univ/)
Paul KENIS (Univ. Illinois at Urbana Champaign)

- Is it possible to fabricate large-area nanomembranes for CO₂ separation?
- What kind of chemical products can be produced?
- Can CO₂ be converted from O₂ mixed gas as feed gas?

What kind of chemical products can be produced?
 →C1 and C2 compounds can be produced electrochemically

CO production from CO₂/O₂ mixture gas ~ electrolyte dissolution method + new MEA cell ~

"Can CO₂ be converted using CO₂/O₂ mixture gas?"

Pat. 2022-47744

Only CO and H₂ can be produced

Design and systemization of electrochemical reaction cells

Paul Kenis (Professor)

University of Illinois at Urbana Champaign(UIUC)

Electrochemical CO₂ conversion system using various catalysts

Ag NPs

Adv. Energy Mater., 2013

PhaseSep Disordered

J. Am Chem. Soc., 2017

Bimetallic Cu-Pd NPs

Ordered

Au on poly CNTs

ChemPhysChem, 2017

CuAg-wire

J. Am Chem. Soc., 2018

Improved electrode durability

ACS App. Mater. Interface. 2021

Design of unique highperformance electrolytic cells

Flow Cell

Moonshot!

MEA Stack

Design and process development of an electrolytic cell capable of performing with the catalysts developed by Moonshot Project

Development of a thermal conversion unit to produce carbon compounds from CO₂ mixture gas from DAC

DAC-U CO₂ **Membrane** separation Electrochemical/ **Thermochemical** conversion Fuel

Prof. Ken-ichi SHIMIZU (Hokkaido Univ.)

Conversion of CO₂ mixed gas from DAC to CH₄ and CO

- Is it possible to fabricate large-area nanomembranes for CO₂ separation?
- What kind of chemical products can be produced?
- Can CO₂ be converted from O₂ mixed gas as feed gas?

High technological challenge

Producing CO,CH₄ from CO₂/O₂ mixed gas

→ there is almost no example in the world

O₂ removal and CO₂ hydrogenation

■ O₂ removal (+CO₂ absorption on catalysts)

Catalyst metal atom(Pt, Ni)

hydrogenation

CO, CH₄ CO, Al_2O_3

"Can't we use the atmosphere directly?"

CO₂ absorption rate → high concentration CO₂ is more efficient Introduction of high concentration CO₂

- →Increased CO₂ adsorption per unit time
- → Shorter changeover time
- → Higher overall efficiency

CO₂ enrichment by membrane separation is important

Thermochemical production of CO from CO₂ mixed gas

Catalyst Pt/Na/Al₂O₃

Catalyst amount: 300 mg, Reaction temp.: 350°C

Gas flux:100 mL/min

Source gas : 0.5%CO₂/10%O₂/N₂

Reducing gas: H₂/100%

Thermochemical production of CH₄ from CO₂ mixed gas

Catalyst Ni/Na/Al₂O₃

Catalyst amount: 300 mg, Reaction temp.: 250-500 °C

Gas flux:100 mL/min

Source gas : 0.5%CO₂/10%O₂/N₂

Reducing gas: H₂/100%

- Continuous adsorption of 80% of introduced CO₂
- ●Converts about 80% of absorbed CO₂ to CH₄
- ●Highly selective CH₄ production

Catalyst performance (international comparison)

	USA (Farrauto)	Spain (Gonzalez-Velasco)	AIST (Kuramoto)	Our achievements
Cycle number	50	16	1	3000
CH ₄ production rate (mmol/g/h)	0.4	1.3	0.8	1.1
Temp.(°C)	350	400	450	350
Reactor type	Single reactor type (Alternating flow)	Single reactor type (Alternating flow)	Single reactor type (Alternating flow)	Dual reactor type (continuous flow)
Literature	Fuel 2022 , 320, 23842	J. CO ₂ Util. 2018 , 27, 390	ACS Sustain. Chem. Eng. 2021 , 9, 3452	

World-leading performance

Direct Air Capture (DAC) by CO₂ capture nanomembranes

Enrichment of CO_2 from the air (400 ppm \rightarrow 2000 ppm)

Continuous CO₂ adsorption & Reduction

Advantages

✓ Conversion of concentrated CO₂/O₂/N₂ mixtures to CH₄ and CO "directly" and in one step

Challenges

✓ Requires highly selective, low-temperature catalysts

Continuous production of CO, CH₄ by DAC-U system

Future task

- Optimization of H₂ introduction conditions
- Recycling unreacted H₂

Primary issues at the beginning of the project

- Is it possible to fabricate large-area nanomembranes for CO₂ separation?
 - **→Possible**
- What kind of chemical products can be produced?
 →CO₂ conversion is possible even with O₂-mixed feedstock gas
- Can CO₂ be converted from O₂ mixed gas as feed gas?
 CO, CH₄, C2 can be produced

KPI for 2022

Select basic membrane materials that exhibit high CO₂ selectivity. Demonstrate conversion from CO₂ mixed gas to CO, CH₄, and C₂H₄

Distributed deployment of DAC-U systems

Carbon resource recycling society based on local production for local consumption

