

Integrated Electrochemical Systems for Scalable CO₂ Conversion to Chemical Feedstocks

PM : SUGIYAMA Masakazu Director / Professor Research Center for Advanced Science and Technology (RCAST), The University of Tokyo

Implementing organizations:

The University of Tokyo, Osaka University, Institute of Physical and Chemical Research (RIKEN), UBE Corporation, Shimizu Corporation, Chiyoda Corporation, Furukawa Electric Co., Ltd.

The technology developed by this project aims at:

- □ Utilization of atmospheric CO₂
- Negative carbon emission
- □ Scalable CO₂ conversion (100 million tons/year @ 2050)
- Social implementation, industrialization

Final target at FY2029

Development of a system to convert atmospheric CO₂ into useful chemical feedstocks based on electrochemical processes.

Achievement of carbon cycle based on electricity which is a platform of future energy system \sim Toward 100 million ton/year reduction of CO₂ emissions @ 2050 \sim

Source: Plastic Waste Management Institute, "プラスチックリサイクルの基礎知識2020" http://www.pwmi.or.jp/pdf/panf1.pdf

Urban DAC-U System (Artificial Photosynthesis)

"We will be able to make various materials from CO_2 and water in the future."

CO₂ capture from both outdoor and indoor air

Urban artificial photosynthesis (circulation of both CO₂ and O₂)

8

Scalable system adaptable to various situations

Estimated relative production cost of ethylene

R&D items				Player	
CO ₂ capture	CO ₂ capture by TSA method Electrochemical CO ₂ enrichment			SC	Collaborative member
enrichment				OSU	Collaborative member
CO ₂ electrolysis	Reactor member	Catalyst Functional Substrate	Substrates	OSU	UBE
			Cu-based materials		FKW
		Gas-Diffusion Electrode (GDE)			Collaborative member
		MEA- based reactor	Membrane	RIKEN	Collaborative member
			Reactor		
		Stack		New member	
System integration	Reaction p Integrated	Reaction process development / Process integration Integrated system analysis & control / LCA UTK CYD			CYD

*UTK: The University of Tokyo, OSU: Osaka University, RIKEN: Institute of Physical and Chemical Research,

UBE: UBE Corporation, SC: Shimizu Corporation,

CYD: Chiyoda Corporation, FKW: Furukawa Electric Co., Ltd

	2022	2024	2029
$CO_2 \text{ emission}^{\text{\%}}$ (t-CO ₂ /t-C ₂ H ₄)	+1.0 ~ +1.5 at device level	+0.5 ~ +1.0 at laboratory scale 1,000 hours	< = 0.5 at pilot plant scale 5,000 hours
CO ₂ emission during operation	- 0.5 ~ 0.0 (5.0~4.5 V, FE= 55 ~65%)	- 1.0 ~ - 0.5 (4.5~3.8 V, FE= 55 ~80%)	< - 2.0 (3 V, FE= 80%)
CO ₂ emission upon equipment manufacturing	+1.5	+1.5	+1.5

[∞]CO₂ emission of the entire system from atmospheric CO₂ capture to ethylene production (including emission upon manufacturing of equipment)

• Target at FY2029: Pilot demonstration for 5,000 h

Progress and results: CO_2 capture and enrichment (1/2)

FY'22 Target

0.04% to 0.4%

10 times enrichment

 \square CO₂ Capture : 0.04% \Rightarrow ave. 0.7% achieved

 \square CO₂ Enrichment : 0.7% \Rightarrow 100% achieved

Air **CO**₂ Capture **Electrochemical CO₂ Enrichment** Electrolysis 100 •CO₂ Capture by TSA^{*} 50 [Result]CO₂ conc. **Cooling(Adsorption)**⇔**Heating(Desorption)** 100% achieved 10 Enriched Carrier Gas CO₂ conc. (%) **Target Concentration** CO₂ Gas 5 ≧4% [Result]CO₂ conc. Outdoor Dilute CO₂ Air Cathode Anode Indoor Air Ads. ave. 0.7% achieved 1 Heat Cold 0.5 Source 2H2O **Target Concentration** ≧0.4% 20H < > OH 2CO2 2HCO₂ > 2CO2 H₂CO₂ 0.1 0 2H20 0.05 a B S ·Use of an electrolyte containing quinone analogues atmospheric air **XTSA:** Selective enrichment of CO₂ 400 ppm(0.04%)**Temperature Swing Adsorption** 0.01

Successful enrichment of CO₂ from 400 ppm to 100%

Progress and results: CO_2 capture and enrichment (2/2)

 CO_2 enrichment from CO_2/O_2 mixture

Confirmation of repeated adsorption/desorption performance Confirmation of CO₂ selective separation

50

40

30

10

(mA)

Progress and results: CO_2 electrolytic reduction (1/3)

Ultra-high rate electrolysis The world record High current density (2,000 mA/cm²) at the 80% of FE (for C2+ products) was achieved. FY22 target cleared 100 mA/cm² □ High FE and low operation voltage FY24 KPI target cleared • 60% of FE (C_2H_4) was achieved at the 4 V of operation voltage. CO_2 emissions (t- CO_2 /t- C_2H_4) ※FE: faradaic efficiency $+0.5 \sim +1.0$ □ FE for C2+: 80% **D** FE for C_2H_4 : 60% **Current density**: Operation voltage: 4 V 2,000 mA/cm² 90 ± 0 Current efficiency (%) +0.5C2 + current efficiency (%) Current efficiency (%) 80 60% +1.06V 70 +1.5Neutral 4 V media 60 +2.0 30% 50 +2.5 0 1,000 2,000 3,000 Current density (mA/cm²) 40 current efficiency (% C_2H_4 80 2020年 C_2H_4 30 Our / 60 Project 20 Other (MEA) (GDE) В С Groups Α 3 6 EES. Catal., 03 Nov 2022 Voltage (V) Additive metal species Cell improvement 5+ https://doi.org/10.1039/D2EY00035K CO_2 emissions from the whole system 500 1,000 1,500 2,000 $(t-CO_2/t-C_2H_4)$ Current density (mA/cm²) Achievement of both high FE Improved Reduced and high current density reaction selectivity operation voltage

High current density, improved current efficiency, reduced operating voltage achieved.

Progress and results: CO_2 electrolytic reduction (2/3)

Development of cell stacks

5.0 cm square

Current efficiency (%)

Pressure distribution Flow velocity distribution

- Started operation of 5.0 cm square size reactor with developed electrodes
- CFD evaluation of gas/liquid distribution with common inlet/outlet flow channels

Enhancement in C₂H₄ current efficiency & stability Design of larger area cells and stacks of MEA-type cells Progress and results: CO_2 electrolytic reduction (3/3)

Strategies for enhancing FE (for C₂H₄)
 Suppression of parasitic H₂ evolution by surface modification of a carbon substrate.

② Thickness optimization of the catalyst layer to meet the target current density.

- Promoting dimerization of CO
- **C** CO dimerization is the key for the improvement of C_2H_4 generation
- Preparation of an appropriate porous electrode that allows to increase the local CO concentration

Established optimal design guidelines for electrodes

□ Integrated system design: introduction of CO₂ recycling flow using CO₂ enrichment cells

Evaluation of CO₂ emission in the electrolytic reduction process with CO₂ recycling

Operating conditions necessary to achieve carbon negativity (emitted CO_2 < fixed CO_2) is identified.

□ Conference presentations, papers, newspapers, etc. (2020.9-2022.8)

	number of events	note
Conference Presentations	27	The Electrochemical Society of Japan, The Chemical Society of Japan, The Japan Society of Applied Physics, ECS, etc.
Journal papers	8	EES Catalysis, ACS Applied Nano Materials, etc.
Magazines, Newspapers, Exhibitions, etc.	15	Magazine (1) Press (8) Release (2) Exhibition (2) Interview/HP (1) etc.

Conference presentations

- Electrochemical Society: 5 presentations
- PVSEC-33: 1 presentation
- Symposiums held and exhibitions
 - CEATEC2022
 - PVSEC-33

with a current density of 1.7 A cm⁻² in neutral electrolytes †
 Asato Inoue, a Takashi Harada, a ab Shuji Nakanishi * ab and Kazuhide Kamiya
 Ultra-high rate electrolysis results by Osaka Univ. published in EES Catalysis (Royal Society of Chemistry, UK)

Ultra-high-rate CO₂ reduction

reactions to multicarbon products

EES. Catal., 03 Nov 2022

EES Catalysis

Distributed Carbon Neutral Symposium Using Electrochemistry

Intellectual property (cumulative) : 9 applications filed

Dissemination to the public through various media and promotion of intellectual property rights

□ Major results

Theme	Major Results	Future Works
CO ₂ Capture and Enrichment	•Successful enrichment of atmospheric CO_2 from 400 ppm to 100% (pure CO_2).	 Design and manufacturing of prototypes Low drive voltage and long-term stable operation
CO ₂ Electrolysis	 High current density (2,000 mA/cm²) at the 80% of FE (for C2+ products) was achieved. 60% of FE (for C₂H₄) was achieved at the operation voltage of 4V. 	 Preparing electrodes that satisfy all the required factors simultaneously (i.e., high FE, high current density, and high stability)
System Integration LCA	 Conceptual system design from atmospheric CO₂ capture to ethylene production and LCA for CO₂ emission 	 Continuous process benchmark of "CO₂ Enrichment + Electrolysis." Improvement of LCA accuracy

□ Future Development Goals

	Scale of the system	CO ₂ emissions (per ton of ethylene produced)
FY2024	Laboratory scale	Less than +0.5~+1.0 ton
FY2029	Pilot plant	Less than –0.5 ton (Carbon negative process and continuous operation for 5,000 h)

Efforts toward social implementation Establishment of a four-tiered structure

*UTK: The University of Tokyo, OSU: Osaka University, RIKEN: Institute of Physical and Chemical Research, UBE: UBE Corporation, SC: Shimizu Corporation, CYD: Chiyoda Corporation, FKW: Furukawa Electric Co., Ltd

END