

Advanced enhanced rock weathering (A-ERW) technology actively combined with site characteristics

PJ partners

PM : Professor Takao NAKAGAKI Waseda University Subcontractors

Overview: Enhanced rock weathering (ERW)

This R&D PJ targets a novel ERW technology accelerating weathering x CO_2 mineralization of natural rock and clarifying net CDR effect (carbon accounting method).

ERW: current status & common problem in the world

Common / A-ERW's specific problems

Common problem : Carbon accounting method MUST be established Evaluation of pretreatment energy depending on rocks + development of energy saving process Quantification carbon storage depending on soils + sophisticated natural carbon cycle model and consolidating information database of accurate carbon accounting

A-ERW's specific problems and challenges

- Expanding availability of rocks utilizing geological characteristics of Japan A)
- Acceleration of weathering and new co-benefits creation by utilizing site characteristics B)

Development of cultivation and soil management aiming at enhancement of weathering and C) **Philippine Seaplate** maximizing co-benefits

Accelerated Accurate Accounting **A**dvanced Active Agro-industrial **A**dvantageous

Pacific ocean Eurasian plate

Furthermore

Geological characteristics in Japan Various and extensive rock resources due to location at subduction zone of plates

"A-ERW"PJ aims to:

- accelerate artificial weathering and CO₂ mineralization by utilizing characteristics of Japanese rocks and application sites
- consolidate information database of accurate carbon accounting including natural carbon cycle

Concept of accurate carbon accounting

Clarifying problems from previously reported literatures: Solve all problems

- ① While geological distribution database for domestic stratums/rocks has been developed, there is no database for CO₂ mineralization potential (No recognition for: weak weathering-proof ≠ fast CO₂ mineralization)
- 2 While mathematical models are proposed, extent of CO₂ mineralization depending on mineral species of rocks/pretreatment/weathering is unclear. (Basic mechanism is party know. However, modeling for multi-pathway mineralization, such as combination of transportation and dissolving process of CO₂, and reaction with Ca/Mg through gas-solid/gas-liquid interfaces is incomplete.)
- ③ Effect of application on farmland and recycling on natural environment and change in carbon balance is unknown. Monitoring method has not been developed yet. (Glowing environment = law of change in carbon balance and quantity depending on combination of local climate/type of soils/clop species are unexplained. Moreover, other GHGs, such as N₂O/methane, have not been considered.)

(1) Expanding availability of rocks utilizing geological characteristics of Japan

Orthoclase feldspar Quartz ENa-rich NaAl, SiO, Muscovite E Rhyolite Granite Acidic Felsic	Plagioclase feldspar Amphibole Andesite Diorite Neutral Intermediate	Carrich SiOy Cance Al, SiOy CalMelf CalMelf CalMelf CalMelf CalMelf Calmelf Ca	$75 - 25 \frac{8}{9}$ $50 - 50 \frac{1}{100}$ $25 - 75 \frac{1}{100}$ $25 - 75 \frac{1}{100}$ hatiite Extrusive dotite Intrusive gly basic Acid/Base amafic Color	20 Serpentine Amount of CO2 15 0.36 mineralization 10 Peridotite 0.14 9 0.12 0.07 Gabbro 0.05 0.03 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2		
80 6	1 I 53 52	l 45	30 SiO ₂ %	A simple gas-solid contactor is available for serpentine and olivine? (if so, it can:)		
3	I I 9 16	26	40 FeO+MgO %	 ✓ simplify accounting inventory 		
1 1 7 6	1 I 5 4	I I 3 2	K ₂ O+Na ₂ O %	✓ shorten mineralization time by rock selection & proper comminution process		
Light 1	I Gray 40	To Candidate of ro	Dark Color <mark>Ck</mark>	 Furthermore exploring usage of the mineralized rock powder availability assessment of volcanic ash 		
Rock	Weathering (amorphous, weathering-proof)	CO ₂ mineralization potential (Ca/Mg content)	CO ₂ mineralization rate (basicity, high-pH)	Temporal evaluation		
Basalt	Good	Excellent	Good	Better than average, suitable for farmland application Frequently reported due to overseas exposed stratum? Unsuitable for gas-solid contactors?		
Olivine	Good	Good	Excellent	Sufficient potential, but limited geological distribution Unsuitable for farmland application		
Gabbro	Fair	Excellent	Good	Suitable for farmland application next to olivine and basalt		
Serpentine	Fair	Fair ~ Good	Good ~ Excellent	Metamorphic rock found in subduction zones Brittle rock: less grinding energy? Wider variation in CO ₂ mineralization? Unsuitable for farmland application (Ni, Cr or other elements)		

(2) Acceleration of weathering and new co-benefits creation by utilizing site characteristics

Reduction of limestone usage for effluent treatment

Application to acidic (< pH≈6) circumstance sites

Forest soil ameliorationLandslide prevention

(3) Development of cultivation and soil management aiming at enhancement of weathering and maximizing co-benefits

Co-benefit 3: Increase in soil carbon sequestration (Combination with calcium and other minerals derived from rock)

Precipitating in the soil as CaCO₃ Eluviation \rightarrow runoff to coastal area and the same effect 8

Overview of A-ERW associated with resource recycling

A-ERW's Team structure Period: Sep. 2022 ~ Mar.2025

Research items & sharing (subcontractors): At a glance

Items	Subitems	Waseda U.	MHI Eng.	Hokkaido U.	Kyoto P. U.
①Site suitability	(1)Geological assessment			(QJ Science/HRO)	
assessment	(2)Business environment assessment	0		(JCE)	0
2 Mining & grinding	(1)Candidate site of sampling	(Sobueclay)		(HRO/JCE)	
test/	(2)Grinding test & assay evaluation of mineral phase	(Sobueclay)		ODept. of Env. (JCE)	
	(3)Prediction of Pretreatment energy	(Sobueclay)		O (QJ Science)	
③Acceleration of	(1) CO ₂ mineralization by industrial methods	\bigcirc			
ERW	(2)ERW application on open sites			ODept. of Env.&Agri. (NARO)	○ (The U. of Tokyo)
④Field testing	(1)Gas-solid contactor		O (MHI PES)		
environment &	(2)Application on forest slop / abandoned mine site			ODept. of Env. (HRO/JCE/FFPRI)	
effective monitoring	(3)Application on farmland			⊖Dept. of Agri. (NARO)) (JIRCAS/Ryukyu U.)
⑤Information database of	(1)Carbon accounting for industrial CO ₂ mineralization	\bigcirc	0		
accurate carbon accounting	(2)Carbon accounting including natural carbon cycle			(QJ Science)	O (The U. of Tokyo)
6 Conceptual	(1)Conceptual design of industrial ERW		O (MHI PES)		
demonstration	(2)Conceptual design of ERW application on open sites			ODept. of Env. (JCE)	0