No. A-5-1E

PJ: Development of Combined Carbon Capture and Conversion (quad-C) System for the Utilization of Atmospheric CO_2

Background and Strategies

Organization: Tohoku University, Osaka Metropolitan University, Renaissance Energy Research Corporation Contact: Prof. Yasuhiro FUKUSHIMA <u>fuku@tohoku.ac.jp</u> (PM)

Background

CO₂ utilization can be more energy saving (horizontal utilization)

..., but needs to target variety of downstream chemicals with smaller market size

Our strategy for atmospheric CO₂ utilization:

Energy Saving Strategy

Air,

water

Common challenge for DAC-U: Energy requirements in: 1) Air introduction 2) CO_2 desorption. 3) Product separation

absorbents Selective CO_2 CO_{7} ntroduction desorption unreacted reactants absorption **CO₂ Capture** CO_2 CO, conversion Reactant CO₂ Utilization

International Collaborations:

Institut des Sciences Moléculaires, University of Bordeaux, France

Principal Investigators:

Prof. Guido Sonnemann (CyVi), Prof. Dario Bassani (NEO)

• Synthesis of Nanoparticles with High CO_2 Adsorption Capacity (NEO) Ex-Ante Technoeconomic and Environmental Assessment of Emerging Technologies (CyVi)

National Taiwan University, Taiwan

Dr. Tsai-Wei Wu will be a visiting scholar (April. 2023 – Dec. 2023) Expertise: "Assessment of CO₂ utilization processes"

- **Rigorous process simulation**
- Technoeconomic assessment

possibilities of DFMs, but also identified other potential materials with similar characteristics.

report of use as DFM. Our project not only explored

A-5-2E

Workshop @ U Bordeaux Yagihara (TU), Guzman (TU), with Prof. Bassani (U Bordeaux)

No. A-5-2E

PJ: Development of Combined Carbon Capture and Conversion (quad-C) System for the Utilization of Atmospheric CO_2

Exploration of Reaction Systems and Catalysts

Organization: Tohoku University, Osaka Metropolitan University, Renaissance Energy Research Corporation Contact: Prof. Yasuhiro FUKUSHIMA <u>fuku@tohoku.ac.jp</u> (PM)

Members

Dr. Keiichi Tomishige Professor, Tohoku University

Dr. Mizuho Yabushita **Assistant Professor**, **Tohoku University**

Dr. Masazumi Tamura Associate Professor, Osaka Metropolitan University

Dr. Tomohito Kameda Associate Professor, Tohoku University

Dr. Miho Uchida Adjunct Professor, **Tohoku University**

Reaction Systems

Carbamate esters and carbamides are main targets of this project

Sufficient adsorption with CO₂ at 0.04% (400 ppm) was confirmed on CeO_2

Main adspecies on CeO₂ were bidentate and hydrogen carbonates

Influence of water content in the gas on the CO₂ adsorption states and amounts was investigated

Using various amines^[1] and alcohols, reaction systems for Type I process have been explored.

New potential materials were found for Type I and Type II processes.

CO₂ Layered Double **Hydroxides**

LDH performs as DFMassisting material (CO₂) carrier) for Type I process.

LDH

By doping other metals, LDH may work as DFM for Type II process.

Patent application: PCT/JP2022/36820 the concept of Type II process with various DFMs

No. A-5-3E

PJ: Development of Combined Carbon Capture and Conversion (quad-C) System for the Utilization of Atmospheric CO_2

Type II process: Use of metal oxides and LDH as DFMs

Organization: Tohoku University, Osaka Metropolitan University, Renaissance Energy Research Corporation Contact: Prof. Yasuhiro FUKUSHIMA <u>fuku@tohoku.ac.jp</u> (PM)

Members

Associate Professor, Tohoku University

Column Modules Development

Dr. Kousuke Hiromori Assistant Professor, Tohoku University

Dr. Tomohito Kameda Associate Professor, Tohoku University

Professor, Waseda University

Process Simulation

Dr. Yasuhiro Fukushima Professor, Tohoku University

Mr. Koki Yagihara Research fellow (D2) Tohoku University

Type II quad-C process

Model-based estimation of material balances

Exchanged heat (parenthesized values):

Design and Proof of Concept: quad-C core

No. A-5-4E

PJ: Development of Combined Carbon Capture and Conversion (quad-C) System for the Utilization of Atmospheric CO_2

Type I process: Membrane-enabled use of amines as DFMs

Organization: Tohoku University, Osaka Metropolitan University, Renaissance Energy Research Corporation Contact: Prof. Yasuhiro FUKUSHIMA <u>fuku@tohoku.ac.jp</u> (PM)

Membrane Module Development

Dr. Osamu Okada President, **Renaissance Energy Research Corporation**

Type I quad-C process

Dr. Masaru Watanabe Professor, Tohoku University

Dr. Toshiyuki Nonaka **Project Associate** Professor, **Tohoku University**

Dr. Yuya Hiraga Assistant Professor, Tohoku University

Dr. Yasuhiro Fukushima Professor, **Tohoku University**

Dr. Jialing Ni Project Assistant Professor, **Tohoku University**

Successfully prototyped facilitated transport membranes with excellent CO₂/N₂ selectivity and sufficient permeance

100000

CO₂ separation membrane for

 Prototyped hollow fiber membrane module with many support materials with various d,

✓ Numerical simulation and experimental investigation of mass transfer of CO₂