No. A - 7 - 1E

PJ: Development of a bioprocess that uses electrical energy to fix atmospheric CO_2 **Theme: Project summary**

Organization: National Institute of Advanced Industrial Science and Technology (AIST) Contact: Souichiro Kato (s.katou@aist.go.jp)

NEDO

Summary of our project

Development of an innovative biotechnology for negative emission ■ Utilizing electric energy to convert atmospheric CO₂ into organic matters • More than 50 times more efficiently than plants (>50 kg-CO₂/m²/year)

that use electric energy, uptake & concentrate atmospheric CO_2 , and fix CO_2 with high efficiency. that can effectively supply electricity, nutrients and CO_2 to superbugs.

1. Genome manipulation method

■ Target in this PJ : Development of genome manipulation method for *Ralstonia*

*Genome manipulation method

- Objective: Develop a method that can
- * Promotor library

system was developed

Achievements:

Objective: Obtain promoters necessary to

appropriately express the transgenes

·A simple promoter activity evaluation

specifically under CO₂-fixing conditions

CO₂-fixing

Identify 8 promoters that function

R&D Items & Cooperation

Achievement goal (2022FY) : Demonstrate the feasibility of microbial CO₂ fixation by electricity using a gas-phase reactor

Project management, Synthetic microbiology (AIST)

①Genome manipulation technology **②**-4. Synthetic microbiology

- ·Long DNA transfer technology Promoter library
- •Create bacteria that can use electricity to efficiently produce organics

Development of each property

- **2-1.** Electricity utilization (Tokyo Tec. Inst.)
- (2)-2. CO₂ uptake/concentration (Kobe Univ.)
- 2-3. CO₂ fixation (Tokyo Tec. Inst.)

Development of a gas-phase reactor

- **3-1.** Reactor engineering (Nagoya Univ.)
- **3-2.** Gas diffusion electrodes (Osaka Univ.)

2-1. Electricity-utilizing activity

Target in this PJ: Introducing a heterogeneous microbial electron transfer path in *Ralstonia* to confer electricity-utilizing activity

*Introduction of electron transfer path

* Electrochemical measurement

introduce long DNA into the genome.

Achievements: Design a vector based on yeast artificial chromosome Gene introduction into the genome was achieved by CreLoxP method

100 x19 80 activity 60 5,634 bp Promotor 40 20 0 PS 02 PS 01 Pなし

2-2. CO₂ uptake/concentration

■ Target in this PJ: Introducing CO₂-fixing enzyme/-enrichment systems into Ralstonia to henhance their activities

*Introduction of CO₂ enrichment system *High expression of CO₂ fixing enzyme

Objective: Introduce CO₂ enrichment systems of cyanobacteria into Ralstonia **Objective: High expression of endogenous** and exogenous CO₂-fixing enzyme (RuBisCO)

Achievements:

•A bicarbonate transport protein was adequately expressed in Ralstonia •On-going for its activity measurements

3. Gas-phase reactor (1)

■ Target of this PJ : Establishing a gas-phase reactor to enhance CO₂ fixation

*Gas diffusion electrode

* Adhering ability of *Ralstonia*

Objective: Introduce electron transfer path genes of Acidithiobacillus

Achievements:

•Uphill path & Up/Downhill paths were introduced into Ralstonia

 The expression was confirmed at RNA and protein level

Objective: Demonstrate the electricityutilizing activity of the Ralstonia strains

Achievements:

•Current consumption was observed in Uphill pass-introduced Ralstonia strains On-going for Up/Downhill paths mutants

2-3. Enhancement of CO₂ fixation

Target in this PJ: Enhancing CO₂ fixation by introducing a semi-artificial pathway

Objective: Introduce exogenous enzymes to make a semi-artificial CO₂ fixation pathway

Achievements:

•The Em-rTCA pathway that functions by introducing 4 enzymes •CO₂ fixation by the Em-rTCA pathway was confirmed by isotope experiments.

*Construction of semi-artificial pathway *Improvement of CO₂-fixing enzymes

Oblective: Modify two CO₂-fixing enzymes to enjance Em-rTCA pathway

Achievements:

 Activity of CCR was enhanced by fusion with carbonic anhydrase •Activity of PCC was enhanced by fusion with other bacterium's domain

3. Gas-phase reactor (2)

■ Target of this PJ : Establishing a gas-phase reactor to enhance CO₂ fixation * Development of a gas-phase reactor * Superiority of gas-phase reactors

Objective: Develop electrodes capable of supplying electricity, gas (CO₂), and liquid (nutrients) to Ralstonia

Achievements:

·Gas diffusion electrodes used in fuel cells were modified for bio-reactions ·Adjustment of resin/carbon mixing ratio in microporous layer, etc. enabled appropriate gas and liquid diffusivity

[B]: Backing paper (Toray carbon paper + 5% PTFE)

Gas diffusion bio-electrode (B-GDE)

Objective: Improve electrode adhesion in Ralstonia by introducing adhesive fibers

Achievements:

·Adhesiveness of Ralstonia was improved by introduction of Acinetobacter-derived adhesive fiber protein (Ata)

Objective: Develop electrodes capable of supplying electricity, gas, and liquid

Achievements:

•A lab-scale gas-phase reactor was developed to meet requirements

Objective: Demonstrate a gas-phase reactor can enhance Ralstonia CO₂ fixation

Achievements:

•The production of isopropanol (IPA) from H_2/CO_2 was significantly increased by the gas-phase reaction

Comparison of IPA production in the gas-phase reaction and in the aqueous phase reaction

No. A-7-2E

PJ : Development of a bioprocess that uses electrical energy to fix atmospheric CO_2 Theme: Genome manipulation / Enhancement of CO₂ uptake

Organization: AIST, Kobe University

Contact: Souichiro Kato (s.katou@aist.go.jp), Hiroki Ashida (hiroki_ashida@people.kobe-u.ac.jp)

1. Genome manipulation method

Backgrounds:

Ralstonia is a well-known biopolymerproducing bacterium, but the large-scale genome manipulation technology required for this PJ has not been established

■ Target in this PJ

Establish basic technology for genome manipulation for *Ralstonia*, including long DNA transfer technology

R&D items

* Improvement of long DNA manipulation and introduction of Cre-LoxP system to enable to introduce long DNA strands equivalent to several hundred kb * Development of promoter libraries necessary to adequately express each gene

Achievements:

①Long DNA manipulation methods for Ralstionia ⁽²⁾Comprehensive gene expression analysis under CO₂-fixing conditions ③Identify promoters working under CO₂-fixing conditions

1-1. Long DNA manipulation methods

*Long DNA handling methods

* Methods for genome insertion

R. eutropha Genome DNA

Ralstonia eutropha H16

2. CO₂ uptake/concentration

Backgraunds:

Ralstonia has the ability to fix CO₂ by the Calvin-Benson cycle using RuBisCO, but its activity is low

Target in this PJ

Introducing an inorganic carbon enrichment system into Ralstonia to provide CO2 uptake and enrichment capacity

R&D Items

* Introduce CO₂ transport to provide inorganic carbon uptake and intracellular concentrating ability. * Enhance CO₂ fixing capacity through high expression of endogenous and exogenous RuBisCO

Achievements:

①Generation of Ralstonia strains highly expressing endogenous/exogenous RuBisCO ②Enhanced CO₂ fixation activity by high expression of RuBisCO ③Expression of exogenous bicarbonate transport proteins

2-1. RuBisCO high expressing strains

NEDO

Carboxysome

Design a vector based on yeast artificial chromosome (can handle hundreds kpp DNA)

 Examine vector introduction method by electroporation

 Disruption of restriction enzyme genes (Improve recombination efficiency by 50~ fold)

 The efficient genome insertion method (CreLoxP) method was applied for the first time to Ralstonia

 Successful insertion of long DNA strands exceeding tens of kbp into the genome

*High expression of endogenous RuBisCO increased CO₂ fixation activity *On-going for exogenous RuBisCO with high activity

1-2. Gene expression analysis

* Comprehensive gene expression analysis

 Identified a group of genes whose expression is significantly upregulated under CO₂-fixing conditions

* Find promoter candidates

Expression level Fold change

	H2/CO2	Ace	Fru	H2/Ace	H2/Fru	
cbb_C2	7581	21	168	368	45	Chr_2@cbb
hox_pla	2138	11	23	189	95	NAD-reducing hydrogenase
selB_C2	647	5	18	125	35	
ttt_C2	362	2	4	159	88	tripartite tricarboxylate transporter substrate binding protein

Candidates for promoters specifically working under CO₂-fixing conditions

* Find low-expression zones

Candidates for terminators, and sites for DNA insertion

2-2. CO2 fixation by increased RuBisCO

Calvin-Benson cycle metabolites measured by dynamic metabolomics

*The rate-limiting CO₂ fixation reaction was enhanced by high expression of endogenous RuBisCO

2-3. Bicarbonate transporter

Expression plasmid for cyanobacterial HCO3 transporter

1-3. Promotor library

* Evaluation of promoters

Neil Yhal Ndal Yhol Agol

* Promoter library

100 CO₂-fixing x19 60 Promotor 40 20 Pなし 01 02 03

Develop an evaluation system that can easily quantify promoter activity calorimetrically

 Identify 8 promoters that function specifically under CO₂-fixing conditions

Using these results, we are now constructing an artificial synthetic strain with high electrical availability, high CO₂ uptake and fixation capacity, and electrode attachment ability.

*Successful expression of a bicarbonate transporter from cyanobacteria *On-going for its activity measurements

No. A-7-3EPJ:電気エネルギーを利用し大気CO2を固定するバイオプロセスの研究開発 Theme: Enhancement of CO2 fixing enzyme ability and providing electrotrophy **Organization: Tokyo Institute of Technology** Contact: Kosuke Fujishima (fuji@elsi.jp)

NEDO

■ Aim of the project :

Ralstonia eutropha H16 (Ralstonia) has been previously used as a model organism for bioplastic and other material/compound producing microbe. Here, we will search and create a novel CO2-fixing enzyme which play a key role in the Ethylmalonyl-CoA pathway. In addition, a series of genes corresponding to the electrontransfer system in the cell membrane from the iron-oxidizing bacterium Acidithiobacillus ferrooxidans will be introduced to validate the electrotrophic activity of Ralstonia.

< Enhancement of CO2 fixing enzyme ability >

Engineering *Rhodopseudomonas* derived long chain carboxylase (LCC) tp create novel Propionyl/Ethylmalonyl-CoA carboxylase

• The CCR-CA fusion protein was found to be more active than natural CCR under low CO2 concentrations. Artificial domain-fused carboxylase can synthesize methylmalonyl- and ethylmalonyl-CoA via HCO3 fixation

< In vitro validation of enzymatic reactions contributing to a semi-artificial CO2 fixation circuits>

< Electrochemical measurements of the *Ralstonia* strains after introduction of electron transfer pathway>

(FTO ガラス 電極板)

Electron transfer introduced株 (pBBad-rus4)

50mM. Phthalate(pH4.5), -0.1V vs Ag/AgCl for 4h LIVE/DEAD BacLight used

Detection of cathode current by the engineered Ralstonia strain

A total of seven reactions of the ethylmalonyl-CoA pathway in the semi-artificial synthetic circuit, from crotonyl-CoA to succinyl-CoA, were successfully verified to proceed *in vitro*, including enzymes from Ralstonia.

epi (Rh)

We succeeded in synthesizing and preparative isolation of five non-promotional intermediate acyl-CoA compounds, which are industrially difficult to synthesize.

< Metabolic analysis of genes related to ethylmalonyl CoA circuit >

Metabolic analysis of Reut introduced with four genes related to the Em-CoA circuit.

CO2 uptake was confirmed by LC-MS of the exact mass of acyl CoA compounds in cell extracts using Ralstonia with carbon isotope C13 labeled carbonate added to the culture medium.

<Protein expression and localization of electron transfer related genes as well as introduction of both Downhill and Uphill pathways>

Preparation and transduction of inducible expression vectors, confirmation of Cyc2 expression by Western blotting.

<Development of protein biosensor to screen for high activity LCC_PCCB>

Double emulsion generator

We prepared Reut strains transfected with four genes (ccr, ecm, mco, mcl) and artificial enzymes (CCR-CA, LCC_PCCB) created in this PJ, and added carbon isotope (C13)-labeled CO2 during culture, and identified acyl CoA compounds (M+1, M+2) associated with isotope-labeled Em-CoA circuit in the cell extracts by LC-MS.

methylmalonyl-CoA coexists

A transcription factor-fused methylmalonyl-CoA decarboxylase that is conformationally stable only in the presence of ethylmalonyl-CoA, a substrate of LCC_PCCB, was designed PJ: R&D of bioprocesses using electrical energy for atmospheric CO₂ fixation Theme: Construction of microbial gas-phase reactors for CO₂ bioconversion Organization: Nagoya University and Osaka University Contact: Prof K. Hori (khori@chembio.nagoya-u.ac.jp) and Prof S. Nakanishi (nakanishi@chem.es.osaka-u.ac.jp)

The goal of this project

To enhance the rate of CO₂ fixation using Ralstonia in a gas-phase bioreactor integrated with a gas-diffusion bioelectrode.

MOONSH

No. A-7-4E

Gas-phase rxn in the reactor in a glass vial

Optimization of entrance/exit positions for uniform distribution of the gas flow pattern in the gas chamber using Computational Fluid Dynamics

Conclusion

Comparison of IPA production in the gas-phase reaction and in the aqueous-phase reaction

Short AtaA fiber with high adhesivity was successfully expressed on the surface of *Ralstonia eutropha* IP015 cells.
An optimized B-GDE with a modified layer of MPL shows the functions to control water penetration and enhance the cell immobilized amount.

3. IPA production is higher in the gas-phase reaction when using 1% CO₂ and 3% H₂ in the air, compared to that in the aqueous-phase reaction.