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Anthropogenic sources of N,0 and CH, (IPCC-AR6 WG1, 2021)

Challenges:
Understanding of microbial habitats
Use of target microbes in the environment

N,O: 80% mitigation from agricultural soil
CH,: 80% mitigation from paddy rice fields
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How can we reduce
anthropogenic emissions
of CO,, CH,, and N,O?

Reduction of greenhouse gases other than CO, is
essential to limit the rise in global temperatures to 1.5
degrees Celsius above pre-industrial levels. (Paris
Agreement, COP26)

I Bench scale tests I

Field tests 30% mitigation
Lab tests 80% mitigation
patents

‘ 2022
020 Soil microbes: 99% unknown

l Bench scale tests of microbial
2027 GHG mitigation and new plants

20221‘ Microbial GHG mitigation

and breeding of new plants
Microbes with high N20 reductase activity
New nitrification inhibitors
Methane-oxidizing diazotrophs

Business plans for this project
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I Soil structure (Soil aggregate)

Aggregates composed from micro-particles
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Aggregate Hierarchy model
(modified from Tisdall & Oades, 1982)

Soil aggregates are hotspots of N,0

emission and consumption in soils.
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Analyses of soil aggregates and microbes

Microscopic observation |

B soil aggregates are
| microbial habitats!
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Synthesis of artificial
soil aggregates

Elucidation of aggregation mechanisms
with a focus on binding agents
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IT - V N,O Recycling and Evaluation &

modeling (Details - Poster A-8-2, 4)
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Can we use host factors?

South America

We found wild-type NosZ++ strains rather
than previous genome-editing strains.

interactions (I1-1-b)

N,O mitigation in rhizosphere by
wild-type nosZ++ strains.
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N,O reduction by inoculation of a new strain of Bradyrhizobium sp. in Andosol (nosZ- dominant)

11-2, 3 Detoxification and recycling of N,O in upland and paddy soil

11-2 Detoxification of N,O by rhizospheric/symbiotic microorganisms
a) Nzo reducmg microbes in cover crop & no-tillage field (Ibaraki Univ.)
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b) Symbiotic bacteria with high N,O detoxification ability (Shizuoka Univ.)

Highly active strains Abilities
- Rhizobia(nosZ+) ‘ from Abekawa, N,O reduction
Non-Rhizobial bacteria(nosZ+) Narusegawa, N fixation

Nodule formation

isolated from nodule and other fields

III DREAM (Details — Poster A-8-3)
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1’; Drug blndlng pocket

Goal: Reduce N,O emissions by the combined use of {
molecular-targeted drugsand super active N,O-

detoxifying microorganisms

-1 N,O-detoxifying microorganism with
super active NosZ

Metagenomic analysis, Structure-based drug design

~E—

Molecular-targeted drugs effective
for uncultured soil microorganisms

1I-2 HAO-targeted nitrification inhibitor
Nirk-targeted denitrification inhibitor

I11-3 Construction of carriers that mimic soail
microstructure

Construction of carriers that mimic soil microstructure and evaluation of their microbial colonization performance.
Development of microbial materials that enables N.O-reducing microorganisms to function stably in soil.

Materials exploration Formulation® Formulation2 @

Successful acquisition of material candidates Microbial seed coating Carrier materials
for microorganism adhesion and protection

Design of soil mimic carriers and
evaluation of their N,0 uptake potential

Solld carrier screening Development of seed coating method

with excellent inoculum colonization
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Establishment of microbial material
evaluation system by using microbial
colonization mechanisms
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11-3 N,O reéycling by N,O fixing bacteria and microbial consortia (UTokyo * NAIST) — A-8-4
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Visualization of bacteria associated with rice root in the seil (root box) g&t\"‘l’gz:tf‘?gs“gégag:;‘;r:?;E?

involved in microbial interaction
[Fluorescent-reporter GM rice)

pOsPALT activity visualized with
JxVenus-NLS in the rice root

Construction of HGT detection system

Assisting imaging experiments and
NGS an&lyses in the other groups

&

Revealing the molecular basis for rice-
CH, recycling bacteria interaction with
CH, group (unexplored "blue ocean™ 1)

\ 4

Promotion of CH, recycling activity in rice
rhizosphere and formulation of the bacterial

usage
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Irlsoil-separated temperature
control {Nagano G)

|1-4. Construction of the rhizosphere cultivation system for designing and evaluating the soil ecosystem for N20O recycling
(Ryukoku Univ + Betsuyaku G/NaganoG)
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V-2 Maximizing diazotrophic methanotrophy

Digital PCR- Type of Methanotroph responsible for CH, emission reduction

O Rhizosphere soil (Root suface 2 Inside the rice plant (endophytic)
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Isolation of highly-active methanotrophs
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Business models for GHG

mitigation in agriculture
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RESEARCH & DEVELOPMENT PROGRAM

Background and Aims

N,O is generated in degraded nodule, however N,O is reduced

Reduction of nitrous oxide (N,O) emission

by Bradyrhizobium , by soybean rhizobia - 50~80% reduction
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N,O reduction by new nosZ++ Bradyrhizobium strain N,O reduction in nodule rhizosphere and soil

: o . Nodule rhizosphere '
N,O reduction activity in Free-living cell P Soil
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N,O reduction activity of the new strain is 10 times higher than USDA110 of rhizobia infection

Optimization of symbiosis of nosZ++ Bradyrhizobium strain

Search of Bradyrhizobium wild type

strains with nosZ++ phenotype Isolated 18 new strains with nosZ++ phenotype
(As of Novembe 2022 78 strains)

PR Uspa o PsRed

Symbiosis optimization strategy with rhizobial effectors

# m Symbiosis optimization through a combination of natural host

plant infection prevention systems (e.g., R gene products) . nos? Effector
Prc;:elns :njectzd by rh|?ob|a Strains phenotype type
into host plants during infection
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observation of infection competition of rhizobia.

Assessments of effect of microbial inoculation

N e Citizen Science Project
to indigenous community in soil

i Experiment with
For at least two months, s o Gas analysis Microbiome soil and air

the new strain 1 could survive at 10~7 CFU/g

Survivability in the soil microcosm
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RESEARCH & DEVELOPMENT PROGRAM

‘Breeding new rice varieties with low CH, emissions

Background

CH, emissions form paddy rice
fields : 10% of anthropogenic
CH, emissions

- CH, production (light)
« Anaerobic decomposition of organic
material by methanogens
- CH, oxidation (left)

* rhizosphere of rice roots, soil-
floodwater interface by
methanotrophs

« Mitigation options developed by
NARO:

- Water management (prolonged mid-
season drainage)

- Straw management (incorporation after
harvest, instead of before planting)

Research strategies

Breeding new rice varieties with low CH4 emission

v Breeding low CH, rice Development of

- Using genetic resource high throughput reg::gécof
of rice of NARO, we will CHa flux t rice (NARO)
screen low CH, rice measuremen
varieties and breed new i _
commercial rice varieties .

with low CH4 emission Screening of low CH, rice varieties

to breed new rice varieties

~

Breeding new commercial rice varieties
with low CH, emission

v"Use of methanotrophic
N, fixing bacteria
(Tohoku Univ., Nagoya Univ.)

Major results
18
High throughput CH, y 30 to 40 % lower CH,
flux measurement ~ emission
= 14
£
O 12
(@)
E
10
I
4
™ 8
A
TN
e 6
4
Tokida 2021, Kajiura & Tokida, 2021, 2022 Rice A Rice B Rice C Koshihikari

ODevelopment of high throughput CH, flux measurement
by using mobile CH, analyzer (Picarro G4301)

- GC method: 45min, New method: 15min (1/3)

OScreening of genetic resource of rice varieties with low
CH, emission

- We found low CH, emission varieties égene’gic resources)
by 30 t)o 40% compered to Koshihikari (a major Japanese
variety).

Selection of low CH, varieties (genetic resources)

—>Breeding new commercial rice varieties with low CH,
emissions by using genes controlling CH, emission

Development of new inhibitors to mitigate N,O emissions

Background

v About 60% of anthropogenic N,O emit from
agriculture

v"N,O production process: nitrification & denitrification

v'Develop new nitrification and denitrification inhibitors
to reduce N,O emission

Atmosphere h_

Industrial

N-fixation,
iological N,O
N-fixation |reduction

fertilizer -
Nitrogen

cycle
itriﬁcay Target 2 : NirK

Mﬁer

Target 1: HAO

Research strategies

v'in silico screening and metagenomic analysis
for structure-based drag design

Target 1 : HAO Target 2 . NirK

1. High throughput screening 2. In silico screening

1st Enzyme assay Commercial compounds (~8 million)

2d False discovery

Pharmacophore modeling

3rd Bacterial viability assay In silico screening

Hit selection

Lead optimization

Lead compounds

Major results

Registered
m Developing

v We obtained 108 HAO-

targeted nitrification
inhibitor candidates which o2 Shncted o
have much higher - tos) W
activities (I1C;; < 4.0 pM)

than commercially
available inhibitors.
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Strong inhibitor

Commercial nitrification inhibitors
Target 1 : HAO A B C
SO\ =y "
i e | Rk B e
NH; — NH,0H — NO,” —— NO;" IC., < 4 uM ) N
AMO HAO |
i
] ] ] 2 1000 ez >> 500 uM
commercial This project S T
nitrification = % ¥ T I I |
inhibitors g} " e et = Non-registered |
"
=

o &
—

by

— 60
B
B —
N ——

W, —

Bacterial viability assay

Obtained 108 HAO-targeted nitrification inhibitor candidates

and 100 Nirk inhibitor candidates

No commercial denitrification inhibitor was

Target 2 : NirK
developed so far.

NirkK

v A high throughput screening

provided 100 Nirk inhibitors (ICs,

< 10 pM) out of about ten
thousand compounds.

¢ SRS
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hitrogen and carbon cycles

Theme: N,O recycling by N,O-fixing bacteria

Organization: The Univ. of Tokyo, National Institute of Advanced Industrial Science and Technology
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Contact: Keishi SENOO (E-mail: asenoo@g.ecc.u-tokyo.ac.jp)

Introduction

N,O recycling crop production system

) |

High N,
generation

Reduced N,O > Generated N,
Reduced
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N,/N,0 generation

60% of the reduced

Denitrifying bacteria

ratios of denitrifers

N,O is missing

with N-fixing ability

are diverse

Background: Generated N,0 might be fixed by bacteria in paddy soil Purpose: Microbial transformation of N,O to NH,* for crop production

I. N,O fixing bacteria in paddy soils

Bacteria with N,O-fixing potential

@ Iron-reducing diazotrophs
harboring nosZ

(3 Bacterial consortia grown under
N,O as a single N source

c—)

Anaeromyxobacter sp.

. Predon:linzflfntt in pac_ldty sdoiI§ g Culture
- nos and nif transcripts derive medium®@ :
from this genus were frequently Pad_dy A?I"ObIC T
* .. detected in paddy soils soil = Microaerophilic
Cult Anaerobic
—— - - —) ulture
2 Denitrifier harboring nif genes ‘ e e

Bradyrhizobium sp.

- denitrifier with high-N,OR activity
- harbour nif genes

Ny

Enrichment culture + amplicon sequencing

4

®N,O-fixing ability of Anaeromyxobacter

- Inoculation of paddy soil
microcosms (sterilized soil) with
Anaeromyxobacter spp.

- survived but not multiplied where
N>O was the sole nitrogen source

- In the presence of N,O and small
amounts of N,, growth was stable and
N,O was reduced

- nosZ and nifD transcripts were
detected

- Confirmation of their growth using
copy numbers of 16S rRNA and
transcriptions of nosZ and nifD

@ N,O-fixing ability of Bradyrhizobium

- In the presence of N,O and small amounts of N,, growth was stable

- Confirmed their growth using copy numbers of 16S rRNA and transcriptions of
nosZ and nifD— >N content of the soils before and after incubation were
currently analyzed using IRMS

Anaeromyxobacter sp. and Bradyrhizobium sp. can fix N,O
in the presence of small amounts of N,

(®Microbial consortia grown under N,O as a sole N source

Enrichment culture (Aerobic) ] Isolation
Enrichment
culture Agar plate®
EE—
=
TP\ - S
N0

\d \ Agar plate@

= W

Gradual simplification of community structure &

-+ Obtained the microbial consortia grown under N-,O as a sole N source
- Detected the reduction of N,O gas
- 15N content of the soils were currently analyzed using IRMS

Future plan

» Quantification of fixed N,O
- Analysis of factors that enhance N,O fixing activity

II. N,O fixing consortia in paddy soils

Organic N
(nutrient of plants)

Nif

Greenhouse gas

Nos

Denitrification
DNRA .0.

Ammonification

N,O reducing bacteria N, fixing bacteria

» Development of analytical strategies for soil metagenomics.
» Identify N,O-reducing and nitrogen-fixing microbial communities|

» Previous methods: problems and improvements

EImpact on analysis results

B Gene components of nitrogenase
nifH/D/K

Proportion of each type
of nifH reads (%)
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(d)
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(b) Number of KEGG genomes
6000(? 1EIJO 2![)0 3(‘)0 490 SEI)O

(@) Number of RefSeq genomes
nifD  nifH nifKk 9 | 200 4000

nifD = nifH; nifH = nifk

Paddy
soil

nifD < nifH; nifH' > nifk

Freshwater
sediment

nifH > nifD, nifK 1?
»Many pseudo-nifH are registered.

Unreliable results

We developed a highly accurate analysis method that excludes nifH
Mise et al., mSphere, 2021

» Microbial consortia using N,O as a sole N source

NH,*

N,O

A\wﬁ\w Different bacteria?

Paddy soil microcosm
—10% N20 completely disappeared in 1 week
—Metatranscriptomic analysis

) Betaprotebacteria
Same bacteria reduce &

N,O and fix N?

nos
anscr|p

4

nos
transcrip

Deltaprotebacteria

-N2 i <

NH,*

Is N,O fixation driven by the different groups of microorganisms?

Future plan
- Analysis of paddy soil microcosm using 1°N,0
- Verification of ubiquity by analysis using paddy soils from various regions




