No. A-11-8E
PJ: Development of Multi-lock Biopolymers Degradable in Ocean from Non-food Biomasses Qo

Theme: Research and Development of Degradable Supramolecular Polymers with Combined Multi-locking Mechanism and Toughness

Organization: The University of Tokyo (E1+E3) (z
Contact: Kohzo Ito( kohzo@edu.k.u-tokyo.ac.jp ), Shota Ando (s-ando@g.ecc.u-tokyo.ac.jp)  “oauser

B Background

B Assignment and Research Results

Slide-Ring gel with freely moving cross-linking points Research Objectives:

Polythylene glycol o i . i-j tcé'; v s To achieve both toughness and biodegradability
- . Pulley effect FY b through the use of polyrotaxane (PR)
ot — 4
n . e .
Stretch Effect of adding PR gf}  Muitilock function __gly _Social integration
OR — * Combination of toughness and - Synthesis of end-stimulated * One-pot synthesis of PR to reduce
- W biodegradabil degradati i
o) iodegradability of resins egradative PR production cost and control
RO o Release w M polymer chain Coverage rate
RO 6 + o W L . i
- Polycaprolactone(PCL) - Polyvinylalcohol (PVA) w d%fr-ﬂr/hw_’h“{\,}{“ i
R=Hor /% (\)L \/ T ERD
OH Adv. Mater., 2001 ide-Ri [ ] - I
d ater., 200 Slide-Ring (SR) gel K N Degradatlon - Reduced production cost by PR
(2-Hydroxylpropyl)-a-cyclodextrin Science. 2021 Polybutylenesuccinate (PS) cross- 'mked point

’ extraction and purification method
{\p)\ AT e )‘H/\A)L /\/\/"\}\ chain
e Stress dispersion, elongation and toughness due to pulley effect.
p ’ g g p y Polybutylenesuccinate-co-adipate (PBSA) - Controlled structural parameters ; {1 p—
e Effective when added in small amounts to other polymers. * Combines toughness and such as coverage ratio, axial - m”““ - %Mg‘\fﬂ
biodegradability through ester molecular weight, and graft density T e
e In low coverage rate Slide-RIng gels, the elongation-induced crystallization exchange reaction o
rovides both additional toughness and immediate recover  Achieved toughening and 7/*/1% f e e e i
P g Y- biodegradability of ester- fﬁ e A8 e Ra\;v mz;ten:ls ?UCh astcor;\p?cpents,
. . . . o epe - — lec‘iif‘év‘iigm PoL gatlenn solvents, etc., for cost reduction.
e Composed of cyclodextrins and PEG, showing high biosafety and compatibility. exchange vitrimers a

Bl Polyrotaxane Seawater Biodegradability I—

BN Combination of biodegradability and toughness Im—— CERI Dr. T. Kikuchi's protocol

Degradation bacteria concentration was enhanced

Seawater sampling location:

POIertaxane extracted seawater by approximately 10 times

Sampling date:

Degradation speed and stability also improved

Sediment |
(100g) [&

PEG
PCL
N r'érﬁ\’;r
Qv

a-CD S iy &
Dy . W A '8 i fﬂ
0‘ tx:-l? H‘L‘ %" - Seawater Ul N c |
'_55' ¥ . . . (600 mL) <) trasonication xtracte
Toughness S ') Marine biodegradation 2 o SR
PCL+PR(20% oo | Attersd
' Biodegradable polymers 0o (20%:10) gL
n £ 160
R == S R et i
—_— PLA ° 2 100
— — PLA/FG (95/5)| - O 8 —o— Cellulose -§ ;-
= — PLA/SR5/9) Polycaprolactone 2 g
50 -] c o 40
= ) T 20
%40 . . (PCL) § 2 o0 ‘
=] ——— © PCL PCL+PR Cellulose
f 30 . _g’
g . i ,ﬁ i% 00 | After 30 days
5 20 — g & s00
< - \’4}' 0 2 40 60 80 2 o
There were no reports on biodegradability for ./ 2 e e
T T ;ﬁ_? LL‘ Incub n time (day) 00
% 50 100 150 200 250 300 pOIVrOtaxane (PR). g . § 200
Strain [%] PCL-grafted 8 15 & 100
Durability/toughness of PLA due to pulley effect Polyrotaxane Possible biofilm 8 0o
(PR-g-PCL) Ea 5 —e— PCL (MW: 80,000) format|0n Pet POLPR cellgiose
:13 -._-Eie:"Lr:s:F{-g-ﬁCLzuwm . . .
o - Potential as a marine degradability

T T T T T T
0 2 4 6 8 10

Incubation tme (day) accelerator additive
BN Highly biodegradable formulation of polyester I—————

B Toughened polyester resin design

O OmHzs PC Seawater sampling location:
RN Miyagawa beach, Miura city, Kanagawa
H\EOWOH >n__~_8 MW : 1 kg/mol yag ’ v 8
+ Y + H L Sampling date:
O-m Ca] ot o : / ¥ / ampling date

MW : 80 kg/mol Catalyst -
Dibutyltin dilaurate(DBTDL)

| o
H\Eo/\/\/\ﬂﬁo\/\/\/u\oi/ s

1 S-S curves e

— — pclprbhcat.0.5%
----- pelprbhcat.1%
— pclpr10%cat0.1%
— — pclpr10%cat0.5%
----- pclpr10%cat.1%

BOD test

100 After 30 days

-©- cellulose
—0— PCL+PR5%
—0— PCL+PR5%+cat0.1%

w
o

N
ol
]

)
o
|

,,,,,,,,, The transesterification between PR and
el - PCL increased the elongation at break by
‘ more than 5 times.

Stress (MPa)
G
|

Biodegradation by BOD (%)

10

Biodegradation by BOD (%)

PCL+PR5% PCL+5%+CAT0.1%

The transesterification between PR
and polyester has greatly improved
seawater biodegradability.

0 E . — I ; : 0 5 10 15 20 25 30

0 100 200 300 400 500 H H
Strain (%) Incubation time (day)

I Toughenmg and point control of polyurethanes I——

A \\’\\
VAY
<]©> Irradiation conditions : d Tensile test
. “h - UV \A{av'eler.]gth. 3,25 nm ™ Measuring conditions :
Polymer chain Sunlight * Irradiation intensity : 650 mW/cm2 - 10 mm/min
* Irradiation time: 30 min

Seawater s : : * Room temperature
L |mmer5|on W ? Blodegradatlon , 7 — ) * 1 kN load cell
-\A # — |
( \/
w é . , S-S curves samples Young’s modulus  Strain at
Degradation \,/(\A

(GPa) Break (%)
Cross-linked  point P 0.87 4.0
chain E PU_after UV irradiation 0.85 4.1
Polyrotaxane cross-linking Photodegradation of the Components of polyrotaxane S PU_TD-PR 0.64 117.4
. . [ '
for toughening under use ends degrades the attract degradation bacteria $ 20- - R PU_TD-PRPU 065 J1e
polyrotaxane structure as food and accelerate matrIX 1) . - Eg:ifé?rptév irradiation _after UV irradiation
(POI nt—control) biodegradation - -~ PU_TD-PR _after UV irradiation *TD-PR increases elongation at break by about 30 times.
04 , , , , , , *UV irradiation of PU with TD-PR reduced elongation at break
(Speed-control) 0 20 40 60 80 100 120 by about 1/5

Strain (%) -> Suggests degradation of PR by UV irradiation



No. A-11-9E /(REDO
PJ. Development of Multi-lock Biopolymers Degradable in Ocean from Non-food Biomasses C
Theme: Structure and Properties of Multi-lock Biopolymer during the Environmental Degradation_ .
Organization: Kyushu University Takahara Group (E2) (Z
Contact: takahara.atsushi.150@m.kyushu-u.ac.jp

RESEARCH & DEVELOPMENT PROGRAM

UH&SIE !‘aStICS In !nwronment

Introduction: Microplastics (MPs) has became global environment problems due to the environmental
degradation of waste plastic products. In order to face this challenge, it is important and necessary to
study the degradation behaviors of plastics in environment. Also, development of biopolymer which can
be degraded by microorganisms will be a promising way to solve the MPs problems in environment. In
this study, the environmental degradation behaviors of plastics were studied by simulating
photooxidation and biodegradation behaviors of polymers in laboratory using weathering test chamber
and extracted seawater.
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[ 1.Photo-oxidation and biodegradation behaviors of polyolefins containing oxo-biodegradable additives }

The effects of the commercially available pro-oxidants of the oxo-biodegradable type (P-Life Japan Inc.) on the photo-oxidation and
biodegradation of polyolefin (HDPE, LDPE, LLDPE, and itPP) films were investigated.
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The carbonyl index calculated for the neat and additive-containing samples suggested that the additives promoted the photo-oxidative degradation.
The overall degradation rate of the additive-containing polymers was in the order of itPP > LDPE = LLDPE >> HDPE. The biodegradation of
additive-containing polyolefins was not proceeded in extracted seawater.
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Most of practical itPP products are oriented itPP. In this study, the Ghost fishing caused by lost fishing gear has strongly affected the

photooxidative degradation of elongated itPP was examined. marine organisms. In this study, the environmental degradation
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The oxidation susceptibility of itPP was in the order of quenched > PET, nylon 6 fishing lines were degraded after photooxidation while
gradually cooled > 2x elongated > 4x elongated > 8x elongated. PVDF was stable against UV exposure. Also, biodegradability of nylon 4
Crystalline phase has strong resistance against photooxidation fishing lines were confirmed in extracted seawater.
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= Objective
To reveal the relation between the crystalline lamellar structures of polymers and their biodegradability.

= Method
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= Conclusions

Biodegradabillity of polymeric materials can be controlled depending on the orientation of crystal lamellae.
( Acknowledgement: JPNP18016)
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" 1. Introduction
Our technology

Objective until end of FY2022

- Multi-scale simulation technology for polymer
materials from atomic to mesoscopic scales.

* Material analysis using informatics technology polymer chains

Model study of degradation process of polymer crystals

Model study of degradation of multi-lock polymer

Problems in development of polymer materials

Marine degradable

(with functions
for multi-lock)

2
e

Multi layer

I ':,;ﬁ AR Lamella lamellar
Major parts of marine plastlc Is the crystalline polymer, and we must
consider the function degrading the crystal of polymer by unlocking. In this study, we perform the model simulation of the degradation
of polymeric crystalline body by heat to analyze the degradation mechanism. We develop the precise analysis method to distinguish
the crystalline and melt parts using machine learning, and using its tool we clarify the degradation process in detalil.
: Yoshie et al developed the dynamic bond elastomer having the functions of
toughness in use and degradation in marine. In this study, we made the model of dynamic bond elastomer to clarify the functions of
\_both toughness and degradation. In the near future, we will design its material having those functions in high level.
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Problems:

project.

DOI: 10.1039/D2CP03696G

MALIO can identify local structures 40
times faster than the previous our software
which is developed in another NEDO

* Too many candidates of order parameter
 Arbitrariness to choose order parameter

=We develop the software to identify the
local structure automatically using machine
learning technique. Its name is Molecular
Assembly structure Learning package for
|dentification of Order parameters (MALIO)

K. Z. Takahashi, Phys. Chem. Chem. Phys. (in press)

/2. Model study of degradation process of polymer crystals

2.1 development of analysis
method of local structure

2 .2 precise analysis of local structure

o=crystal 4w,

O:Objective

variable

DExplanatory variaBle

—
Optimizationof o = Dw
w using ML

» blue: melt
i red: crystal

Applied to crystalline
polymer -

0 is obtained by
multiplying D and w.

F. Takano, et al.
J. Chem. Phys., in press
https://doi.org/10.1063
/5.0121669

2 . 3 Analysis of degradation process
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/3. Model study of degradation of multi-lock polymer

3.1 Modeling of dynamic bond elastomer
* Dynamic bond elastomer developed by Yoshie et al

3.2 Reproducing experimental results

>Reproduction of mechanlcal properties
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- We can realize the self-healing character using our model.

3.3 Analysis of lifetime of dynamic bond
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3 .4 Dissocciation-association in each
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- about 2% dissociation.

* In elongation, internal stress is relaxed by bond dissociation.
- Network is kept by re-association with suitable bead.
>Dissociation-association occurs frequently in entropy-driven/

type

About 1% association
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- about 4% dissociation .
About 3.5% association

Association with. another bead
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4 . Summary and Future work

Model study of degradation process of polymer crystals

Future work

- Development of MALIO which can be identify the local structure.
* Application study of MALIO to the problem of dynamic structure in degradation.  Future work

Model study of degradation of multi-lock polymer

N

- Development of models for both entropy-driven and enthalpy-driven types.
- Detail analysis of dissociation-association process which cannot be observed

In experiments.

- Development of updated model and design of suitable elastomer for marine

- MALIOQ is applied to the degradations of other polymers. degradation.
\=>We will consider proposal to accelerate degradations due to unlocking effect

=Our simulation is applied to the collaborative study with company team. /
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Ring-Opening Polymerization of Novel Lactones with Protected Hydroxy Group Derived from Biomass and Deprotection-Induced Polymer Degradation

Ring-Opening Copolymerization of Silyl-Protected Lactone
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Multi-Degradation Based on Carbonate and Thioacetal Bonds
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\_ With industry.

/For developing multi-locked degradable polymers from non-edible biomass, we will develop a\
multi-lock technology by utilizing the technology of precision polymerization, which we had
cultivated in the petroleum chemicals, to biomass-based and multi-locked degradable polymers.
By the polymerization of non-edible biomass as a raw material, we propose the concept of a
manufacturing method for multi-lock biopolymers that can be degraded in the ocean collaborating
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Addition—-Fragmentation Ring-Opening
Polymerization of Bio-Based Thiocarbonyl
L-Lactide for Dual Degradable Vinyl Copolymers
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Japanese Patent Application 2021-131293
Macromol. Rapid. Commun. 2022, in press.
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/ Improved Degradability of Poly(Lactic Acid) \
by Introducing Thionoester Linkages
via Ring-Opening Copolymerization
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Hydrophilic Bio-Based Polymers by
Radical Copolymerization of Cyclic Vinyl Ethers
Derived from Glycerol
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[MA]o/[VE]o/[CPBD],/[AIBN], = 1500/1500/20/5.0 mM in toluene, 60 C.

\_Chem. Commun. 2022, 58, 8766.

/ Interlocking Degradation of Vinyl Polymers via \
Main-Chain C-C bonds Scission by Introducing
Pendant-Responsive Comonomers
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