Monitor **Deloitte.**

Final Report Hydrogen market research in Thailand and Indonesia

Deloitte Consulting Ltd. March 2023

Table of contents

Background and Purpose	3
Summary	4
① Desktop research	18
①-1 Energy Trend	19
①-2 Outlook for hydrogen	37
①-3 Policy	42
①-4 Technical readiness and players	57
Appendix Hydrogen Thailand	110

Survey hydrogen initiatives of public and private sectors in both TH and ID, and study the high-level possible scenarios and business models

Project Background

- Carbon neutrality by 2050 has become a mainstream policy target in climate change among nations following the Kyoto Protocol and Glasgow Declaration. In this context, hydrogen and ammonia are expected as alternative carbon-neutral fuels to phase-out from fossil fuels.
- ASEAN countries have also declared carbon neutrality goals. Then it is assumed that introducing renewable energy and establishing a supply chain of hydrogen and ammonia will be accelerated.
- Furthermore, in January 2022, GoJ*1 signed MoU with TH and ID governments on an energy partnership respectively, in which hydrogen is mentioned as a key item. Through the partnership, Japan's contribution to hydrogen development is increasing.
- Japan, however, have not yet fully grasped hydrogen policy and market in TH and ID.

Project Goal

- This project aims to research the following through desktop research and interviews:
 - State of the art of hydrogen policy and market in TH and IN
 - Future outlook of hydrogen in TH and IN
 - Hydrogen technical readiness toward 2050s-60s
- Based on the information above, the project will create high-level hydrogen business models in the 2030s-40s

^{*1:} The Government of Japan

Both TH and IN are trying to deploy hydrogen while it is still on the nascent stage of hydrogen deployment; ammonia is most likely to be the first hydrogen career to be used for mid-to-long distance transportation Executive Summary

-	
Outlook of Hydrogen	 Different from Japan, the TH and IN governments have not shown clear hydrogen strategies or numerical targets On the other hand, they mention hydrogen will be a key technology (transport, power, industry for TH and industry for IN) Private enterprises including SOEs, however, agree that both green and blue hydrogen will be deployed in TH and IN TH and IN are expected to produce green hydrogen at a cheaper cost eventually than Japan; thus, they are less likely to be as dependent on exported hydrogen as Japan
l	
Technical Readiness & Players	 Both TH and IN are on the nascent stage of hydrogen deployment with few projects demonstrated FCEV and HRS demonstration project and geothermal green hydrogen project are at the forefront of hydrogen introduction in TH and IN respectively Numerous MoUs, however, were agreed in the last one year especially between local and Japanese companies Many stakeholders agree that ammonia will be utilized first as hydrogen career in Southeast Asia Unlike Japan, liquid hydrogen is not and is less likely to be used in TH and IN EGAT and PTT in TH, and Pertamina and PLN in IN are leading hydrogen market as local enterprises
Business Models	 In TH, replacing fossil fuel in industry, power and transport sectors near Bangkok area seems ideal in near term, due to the government's view and the technical readiness Hydrogen is either locally produced from solar power, which is abundant VRE resource in TH, or is transported as ammonia from another area In IN, introducing hydrogen in industry sector in Jawa, Sumatera or potentially Kalimantan Islands the best reflect the government's policy and the technical readiness Hydrogen is likely to be green hydrogen produced from geothermal or solar power, or blue/green ammonia delivered from another area

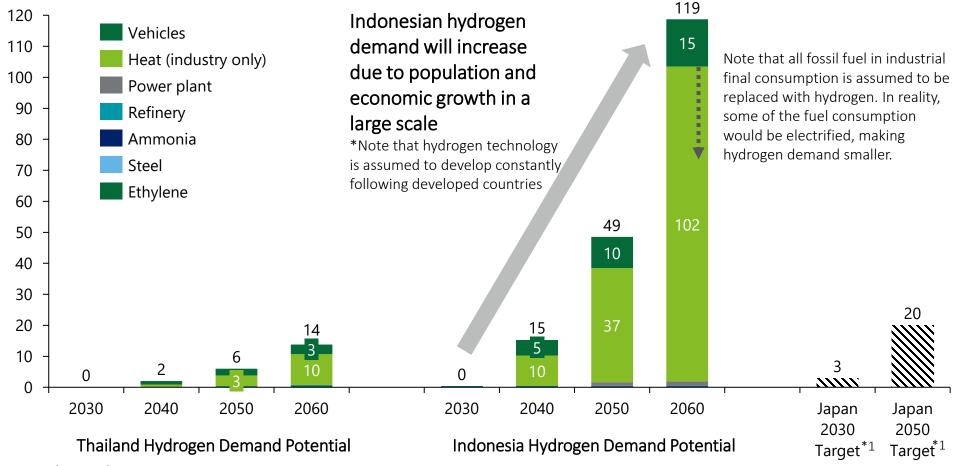
Both Thailand and Indonesia will be importing hydrogen to fulfill its growing demand by 2050.

Output #1

Output #2

Summary for hydrogen outlook and state-of-the-art

		Present			Outlook		
		Thailand 📃	Indonesia	Japan *ref 🥚	Thailand	Indonesia 📃	Japan *ref 🛑
Use	Hydrogen Demand	unknown	1.1M t/year (2020) ^{*2}	■ 2M t/year ^{*1}	 ■ 6 Mt/year (2050) *potential 	 ■ 49 Mt/year (2050) *potential 	20Mt/year (2050) ^{*5}
	Major hydrogen users	Industry (steel, chemical)			 Transport Power Industry^{*9} 	■ Industry	 Transport Power Industry^{*5}
	Hydrogen Used	■ Grey			■ Green/blue	■ Green/blue	■ Green/blue
Production	Source of hydrogen production	■ Fossil fuel			■ Renewable	RenewableFossil fuel + CCUS	RenewableFossil fuel + CCUS
	Hydrogen Production Cost	 0.7 - 1.6 USD/kgH2 (natural gas) *4 *world average 	 1.6USD/kgH2 (natural gas)^{*9} 6.7- 13.4USD/kgH2 (renewable)^{*9} 	■ 8-9 USD/kgH2 (low carbon) *1	■ 1-2 USD/kgH2 (green) (2050) ^{*6} USD/kg		<2.5 - <3.5 USD/kgH2(gree n) (2050) ^{*6*7}
	Importer/Exporter	N/A			Importer *Meanw export hydrogen	hile some Indonesian co	ompanies seek to


*1:「水素を取り巻く国内外情勢と水素政策の現状について」(METI, 2022) *2: "Green Hydrogen in Indonesia: Stakeholders, Regulations and Business Prospects" (IESR, 2022). most likely excludes hydrogen produced for intermediate applications such as for fertilizer plants or refineries *3: "Yearbook of Current Production Statistics Chemical Industry" (METI, 2020). Excludes non-final products. *4: Global average levelized cost of hydrogen production by energy source and technology, 2019 and 2050 (IEA, 2022) *5: "Green Growth Strategy" (METI, 2022) *6: "Global hydrogen trade to meet the 1.5°C climate goal: Part III – Green hydrogen cost and potential" (IRENA, 2022) *7: Japan aims to achieve 20 JPY/Nm3, which is about 220 JPY/kg, around the same value as IRENA estimates. *8: LT-LEDS *9: ANEKA GAS

Hydrogen demand especially in Indonesia is expected to skyrocket due to high rates in population and economic growth if hydrogen technology develop constantly

Output #2

Potential Hydrogen Demand*2

(million ton)

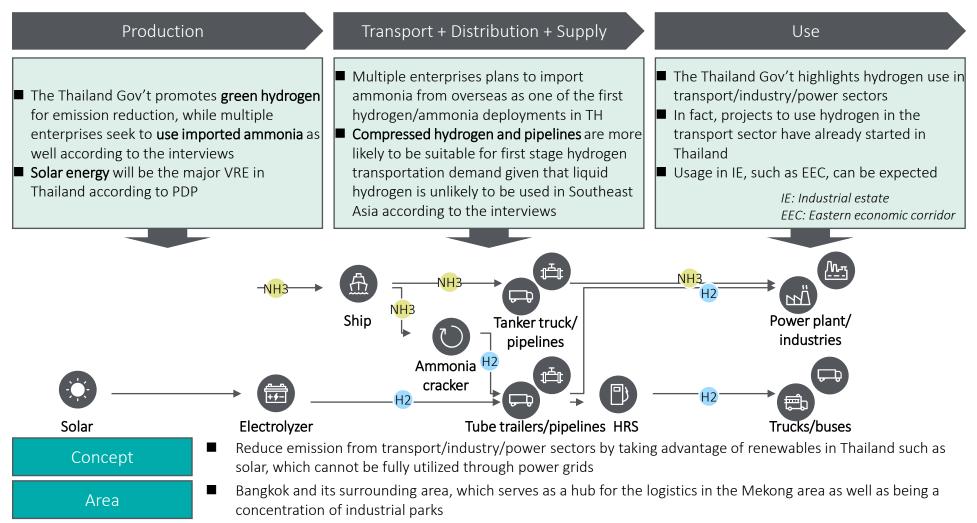
Source: Deloitte analysis

*1: Note that potentials is always larger than targets *2: Does not include self-consumed hydrogen

Output #2

*Reference Calculation assumption for hydrogen demand projection

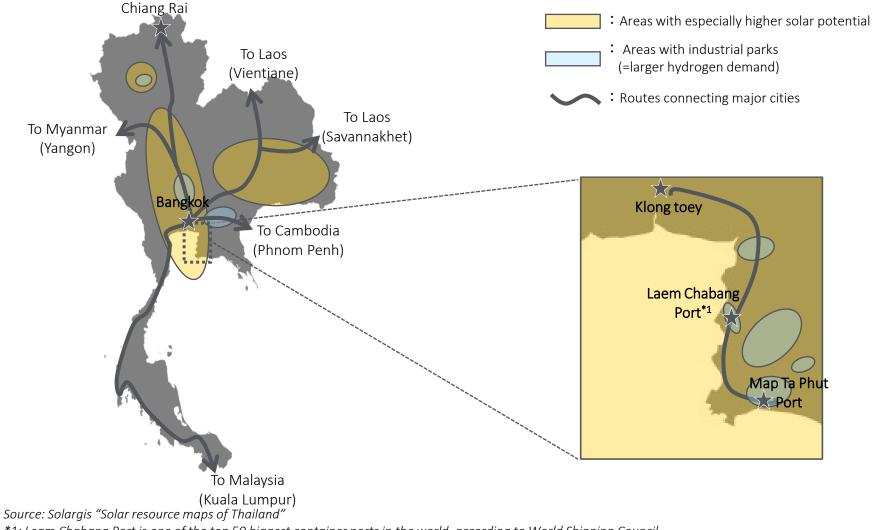
Vehicles	 [# of cars (unit)] × [average milage per year (km/year)] × [% of hydrogen vehicles (%)] × [efficiency of hydrogen vehicles (km/kg-H2)] [# of cars (unit)] is assumed to increase along with population [% of hydrogen vehicles (%)] is assumed to increase in a liner way from 0% in 2030 to 50% in 2060/2065 for cars (the rest is for BEVs), to 100% in 2060/2065 for buses and trucks. Cars exclude passenger vehicles [efficiency of hydrogen vehicles (km/kg-H2)] is set at 105 km/kg for cars, 10 for buses, 20 for trucks
Heat	 [Final fossil fuel energy consumption for manufacturing, const., mining (TJ)] × [% of hydrogen (%)] × [hydrogen conversion (kg-H2/TJ)] [Final fossil fuel energy consumption for manufacturing, const., mining (TJ)] is assumed to increase along with Indonesian final consumption of energy [% of hydrogen (%)] is assumed to increase in a liner way from 0% in 2030 to 100% in 2060/2065 for Thailand/Indonesia
Power plant	 [Capacity of natural gas power plant (GW)] × [% of hydrogen (%)] × [hydrogen conversion (kg-H2/GW)] Capacity of natural gas power plant (GW)] is aligned with the governments' plans if any. Otherwise, the current capacity was assumed to continue over 2060 [% of hydrogen (%)] is set to reach 30% in 2040 for Thailand and in 2050 for Indonesia, since according to the interviews Thailand will have earlier introduction of hydrogen to power plants. 30% is the maximum injection rate target shown by the Japanese government for its 2030 target


*Reference Calculation assumption for hydrogen demand projection

Refinery	 [Capacity of refinery plant (b/d)] × [hydrogen needed to procured (kg-H2/b/d)] [Capacity of refinery plant (b/d)] is not changed from present to 2060 both for Thailand and Indonesia [hydrogen needed to procured (kg-H2/b/d)] is assumed based on the information of hydrogen volume procured for its refinery capacity, which is about 70kg-H2/b/d. Information of ENEOS, an oil and gas company of Japan, was used.
Ammonia	 [Ammonia production (t/y)] × [Hydrogen needed for ammonia production (kg-H2/t-Nm3)] [Ammonia production (t/y)] is not changed from present to 2060 for Indonesia. Thailand's ammonia production was set to zero, since ammonia plants seem to not exist. [Hydrogen needed for ammonia production (kg-H2/t-Nm3)] was set to 177kg of H2 for 823 kg of N2.
Steel	 [Capacity of steel production plant (Mt/y)] × [Hydrogen introduction rate (%)] × [hydrogen needed for steel production (kg-H2/t-crude steel)] [Capacity of steel production plant (Mt/y)] is not changed from present to 2060 both for Thailand and Indonesia [Hydrogen introduction rate (%)] is set the same as IEA forecast introduction rate following 10 years behind. [hydrogen needed for steel production (kg-H2/t-crude steel)] was set at 103kg-H2/t-crude steel
Ethylene (MTO)	 [Etylene production (t/y)] × [Hydrogen introduction rate (%)] × [hydrogen needed for ethylene production using MTO (kg-H2/t-etylene)] [Etylene production (t/y)] is set to reach 900,000 for Indonesia in 2030, aligning with the national target (target year is not shown). For Thailand, the current production volume is assumed to continue over 2060. [Hydrogen introduction rate (%)] is set the same as IEA forecast introduction rate following 10 years behind. [hydrogen needed for ethylene production using MTO (kg-H2/etylene)] was set at about 1 t-H2/t-Etylene

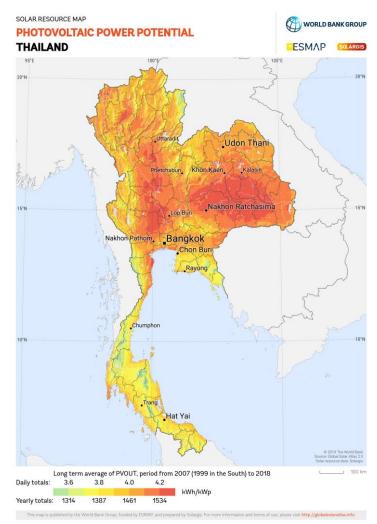
Output #4

In Thailand, supply chain would be established by replacing fossil fuel in industry and transport sectors with green hydrogen from solar PV


A Hydrogen Business Model in Thailand in 2030s-40s

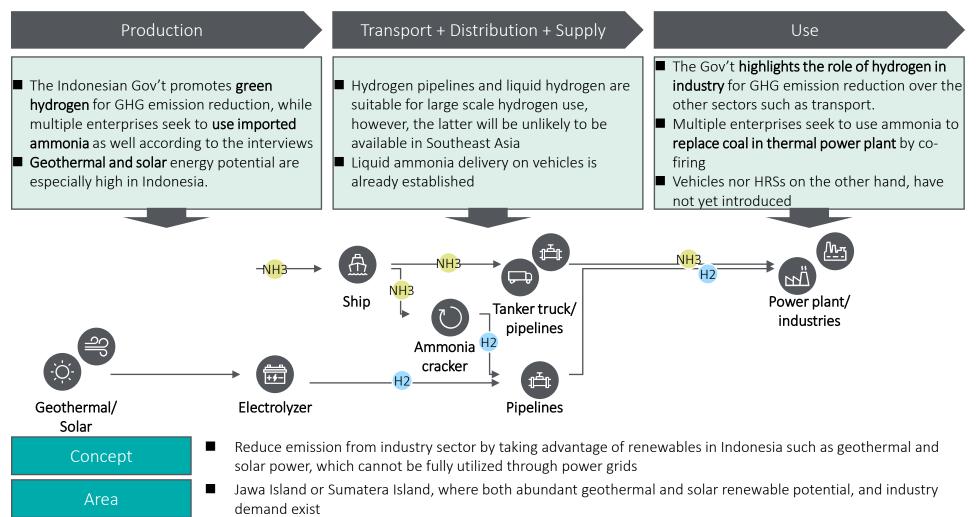
Reference

Bangkok and its surrounding area are ideal for establishing the business model because of hydrogen demand centers and solar PV potential


Potential Map of Thailand

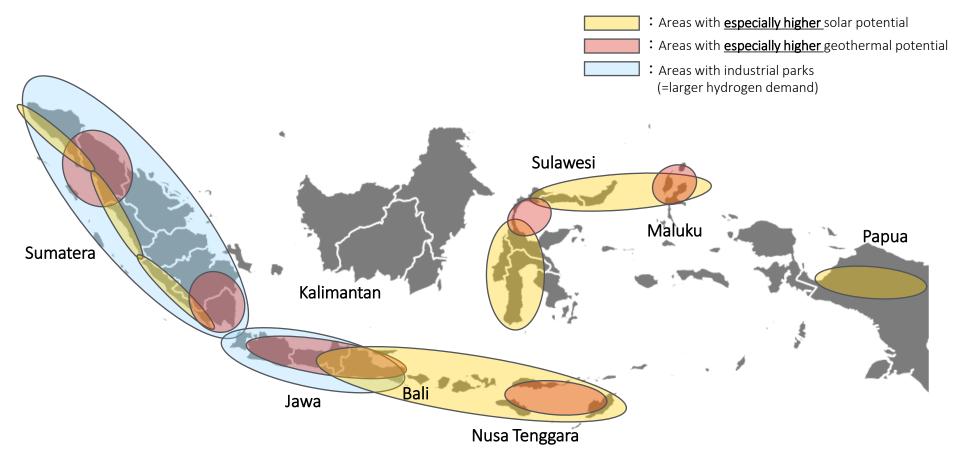
*1: Leam Chabang Port is one of the top 50 biggest container ports in the world, according to World Shipping Council

Reference Solar power potential is abundant around the center area


Thailand Solar Potential Map

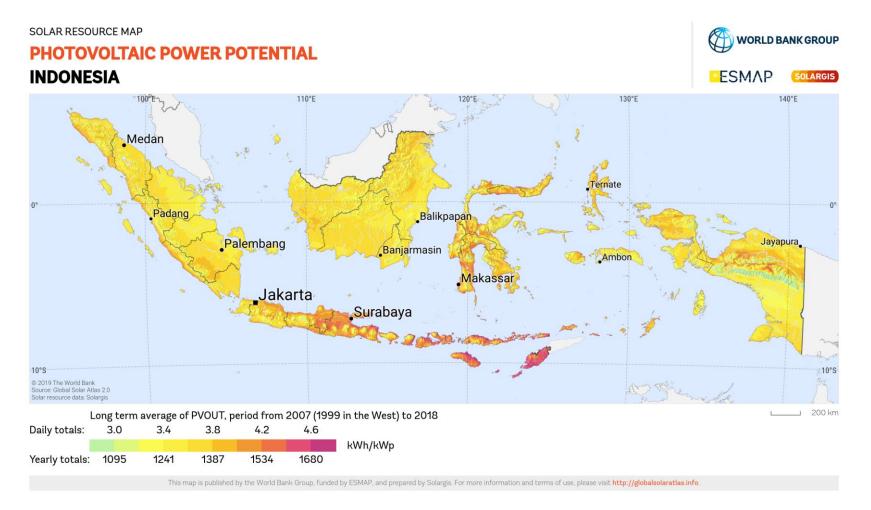
Source: Solargis "Solar resource maps of Thailand"

In Indonesia, supply chain would be established by replacing grey hydrogen or conventional fuel with green hydrogen from geothermal or solar PV


Hydrogen Business Model in Indonesia in 2030s-40s

Reference

Java or Sumatera Islands are ideal for the business model because of their hydrogen supply and demand potential


Distribution map of hydrogen demand and potential

Source: JBIC (2019) 「インドネシアの投資環境」, Nugraha, Saefulhak & Pangaribuan (2017) A Study on the Impacts of Incentives to the Geothermal Energy Electricity Price in Indonesia using Production-based Cost Approach, Solargis "Solar resource maps of Indonesia"

Reference PV power potential concentrates on Jawa, Bali, Nusa Tenggara Islands

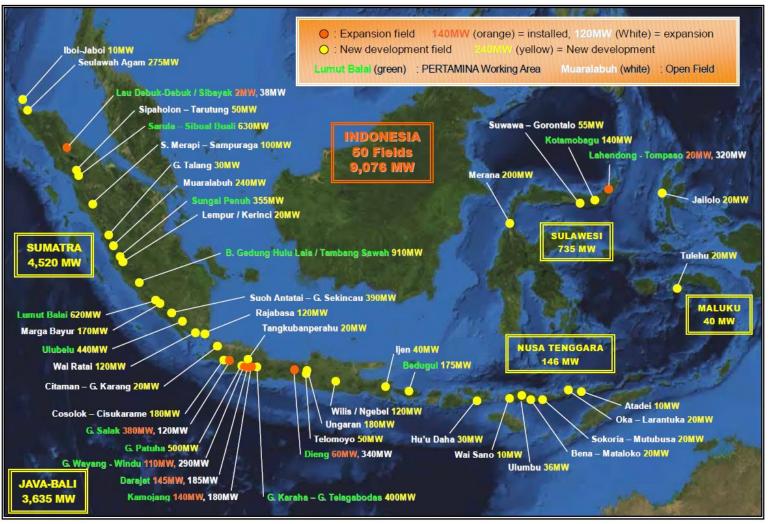
Indonesian Solar Potential Map

Source: Solargis "Solar resource maps of Indonesia"

Reference Sumatera and Jawa Islands have especially high geothermal power potential

Indonesian Geothermal Potential Map

DISTRIBUTION OF GEOTHERMAL POSSIBLE RESERVES

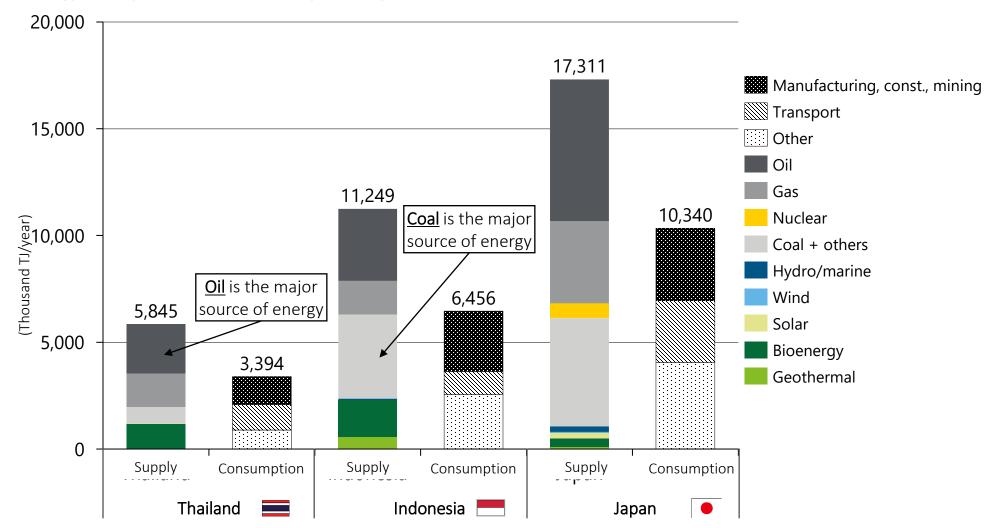


Source: Nugraha, Saefulhak & Pangaribuan (2017) A Study on the Impacts of Incentives to the Geothermal Energy Electricity Price in Indonesia using Production-based Cost Approach 16

Reference

Geothermal potential is mainly located in Java and Sumatera Islands according to latest report from Ministry of Energy (MEMR)

Indonesian Geothermal Potential Map

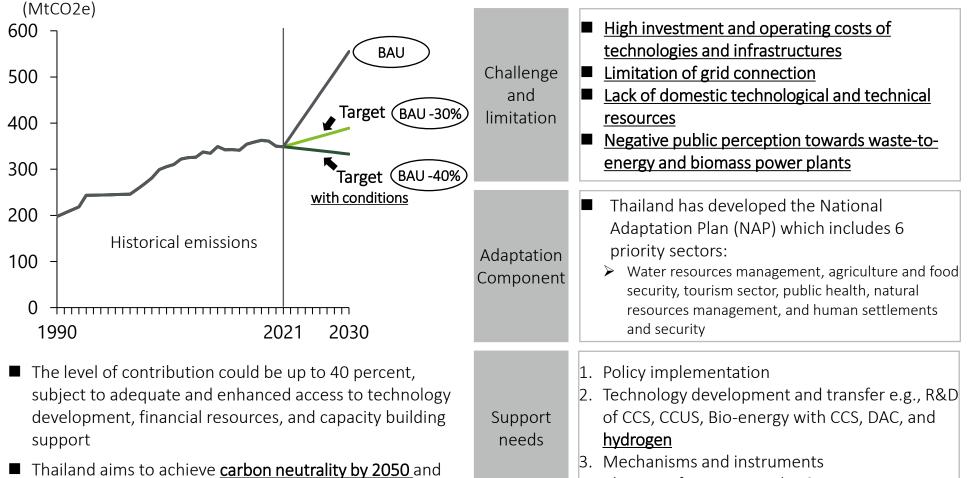


Source: Ministry of Energy & Resource's Master Plan of Geothermal Development (2022) & JICA Reports on Indonesia Decarbonization Report (2022)

1Desktop Research

①Desktop Research Energy trend Outlook for hydrogen Policy Technical readiness and players

Thailand's and Indonesia's major energy sources are oil and coal respectively

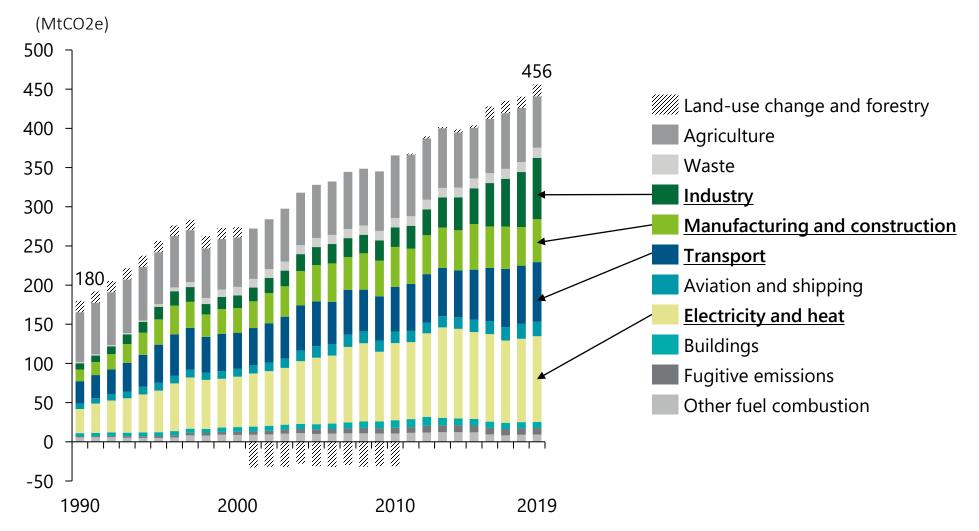

Energy supply and consumption by country in 2019

20 Source: Energy Profile (IEA), The 2020 Energy Balances (United Nations, 2020)

Thailand

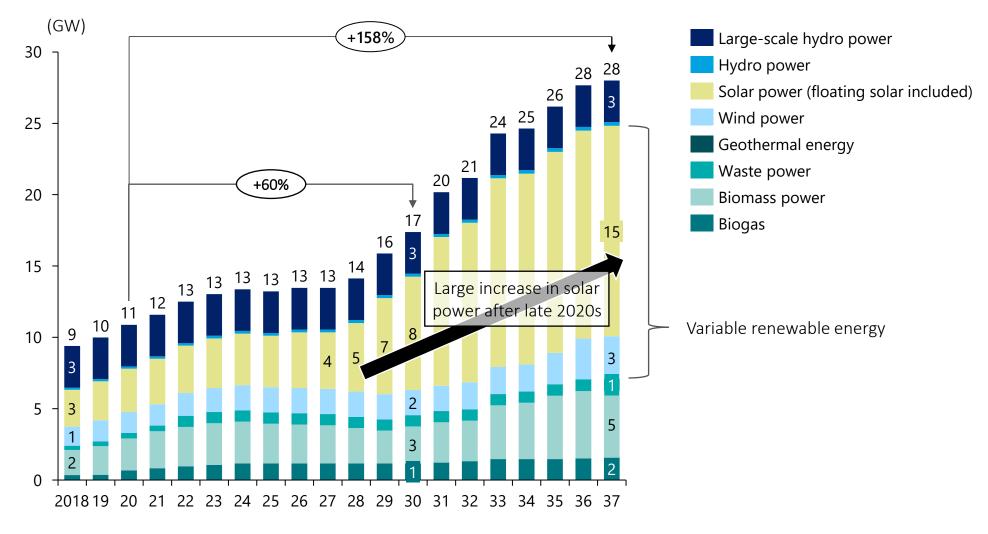
Thailand's NDC shows that it aims to reduce 30 percent of GHG emissions from the BAU level by 2030

Thailand's emission reduction target and countermeasures



Thailand aims to achieve <u>carbon neutrality by 2050</u> and **net-zero GHG emission by 2065**4. Climate information and M&E systems

22 Source: Thailand's 2nd Updated Nationally Determined Contribution, Climate Action Tracker


Emissions from electricity and heat, transport and industry have been increasing in Thailand

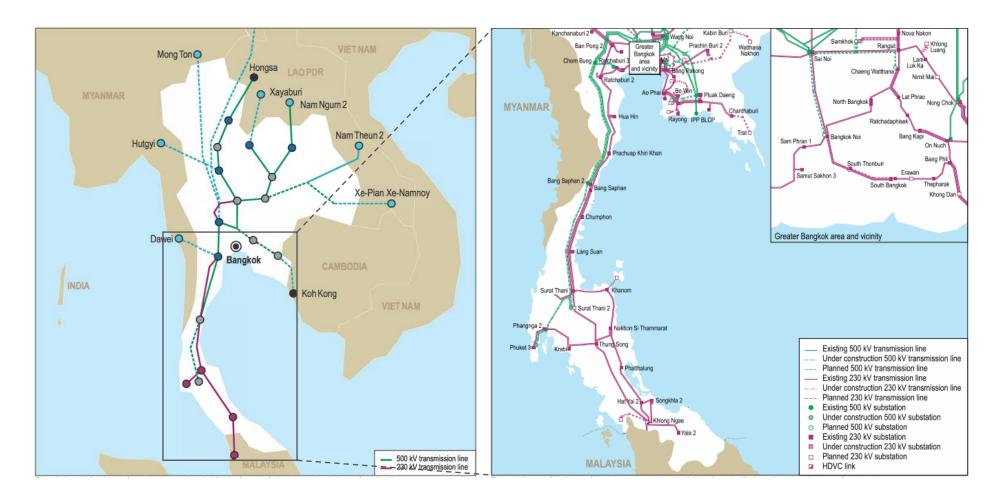
GHG emission by sector of Thailand

Renewable energy capacity is planned to double, with a considerable solar energy capacity increase after the late 2020s onward

Renewable energy capacity prospect in Thailand

24 Source: Ministry of Energy (2018) "Thailand's Power Development Plan 2018-2037 Revision1"

Reference Thailand's Government shows the long-term electricity generation plan in PDP (PDP2018 Rev.1)


Thailand's Power Development Plan (PDP)

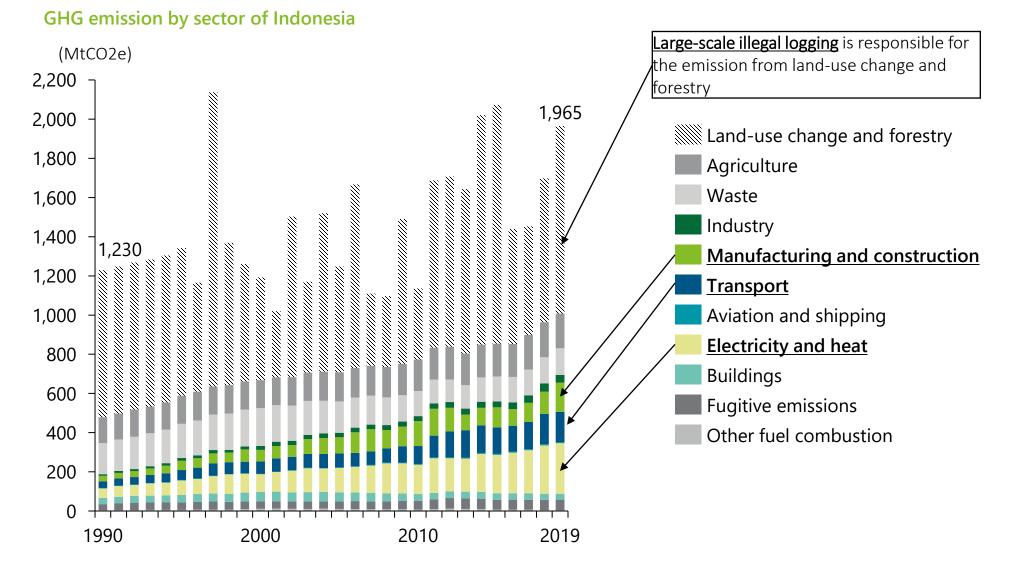
Document Name	Thailand's Power Development Plan 2018-2037 Revision1 (PDP2018 Rev.1)	799318 Review 1			
Year of publishment	2018 Issued by Ministry of Energy	MINISTRY OF ENERGY แผนพัฒนากำลังหลิดไฟฟ้าของประเทศไทย พ.ศ. 2561 - 2580 อบับบันปูตร์ส์ 1			
Background	 Ministry of Energy had been publishing PDPs, and PDP2018 needed adjustment because of the publishment of new Alternative Energy Development Plan (AEDP) 	Pidrophrossonico. you pp.			
Purpose	 To show the long-term electricity generation blueprint of Thailand's energy transition includes the development of new power plants in the country the development of power transmission systems the purchase of electricity from neighboring countries 				
Summary	 The plan prioritizes three different areas, which includes energy security, economy, and ecology, for the next decades It mentions energy sources such as hydro power, biomass power, solar power, waste power, natural gas, and coal, and 25.7 percent of the total energy is expected to be generated from renewable sources Apart from electricity generating plan, It also includes energy efficiency measures 				

Source: Ministry of Energy (2020) "The Direction of Electricity Policy in Thailand", Ministry of Energy (2018) "Thailand's Power Development Plan 2018-2037
 Revision1"

Thailand's power grid is generally robust and reliable, and considering more demand increase, the 500kV T/L is planned to extend to Phuket

Thailand's Power Grid Overview

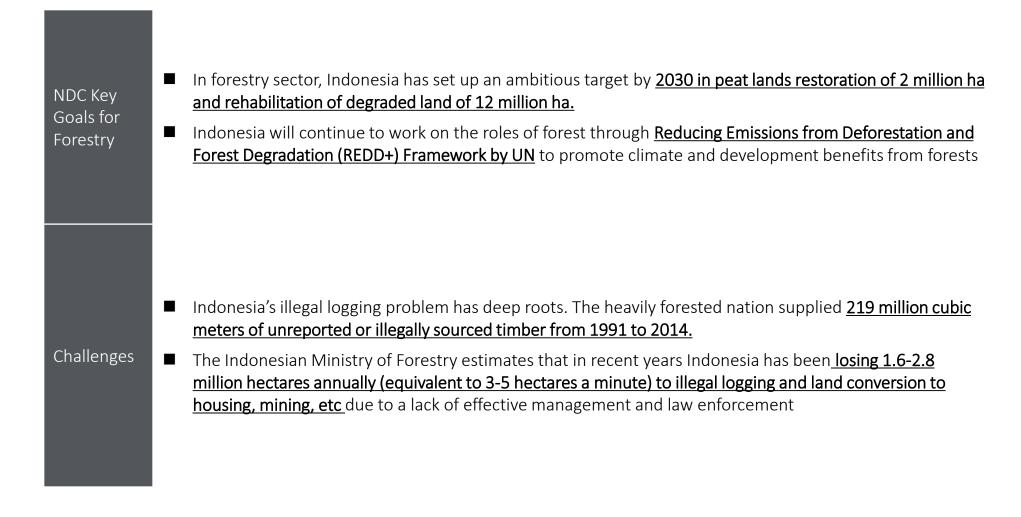
Indonesia

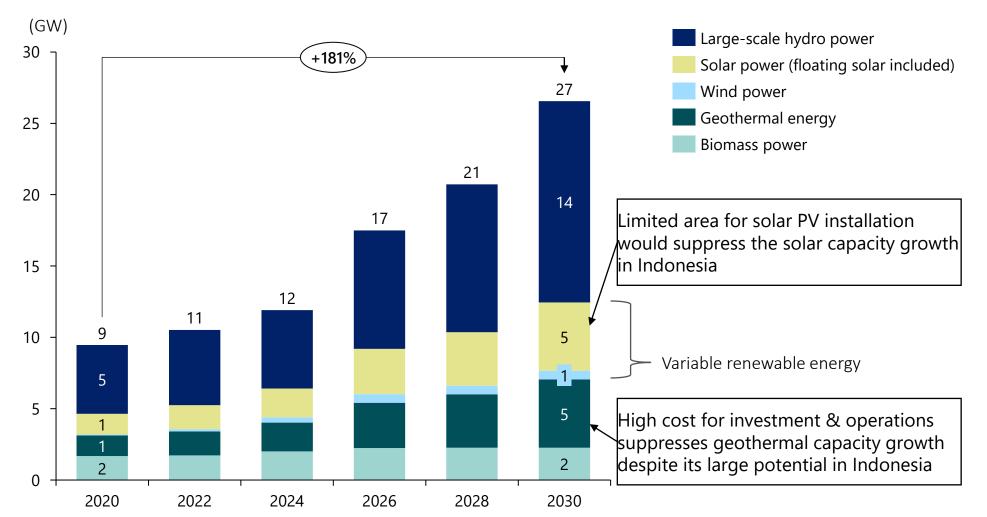

Indonesia's GHG emission is subjected to increase over 2030 according to its NDC

(MtCO2e) Addressing challenges faced by sectors, cities 3,000 BAU and regions in transitioning to low carbon Challenge development and in ensuring a decent future 2,500 and for workers affected by the transition. BAU Target limitation Promoting low GHG emission and sustainable 2,000 economic activities that will create quality jobs in cities and regions. BAU 1,500 43.20% Creating enabling environment to engage Target 1,000 wider stakeholders in NDC adaptation with conditions Developing framework and network for Adaptation 500 building synergy all among sectors & Historical emissions Component **Ministries** 0 Developing guidance, policies, planning and 1990 2021 2030 incentives program for NDC implementation Exact detail and step-by-step programs, which ■ The level of contribution could be up to 43.20 percent include periodical milestones in accordance with the support from international parties with existing NDC planning & initiatives Support needs

Indonesia's emission reduction target and countermeasures

Aims to achieve <u>the peaking of national GHG emissions in</u> <u>2030</u> and to explore opportunity to <u>rapidly progress</u> <u>towards net-zero emission in 2060 or sooner</u>

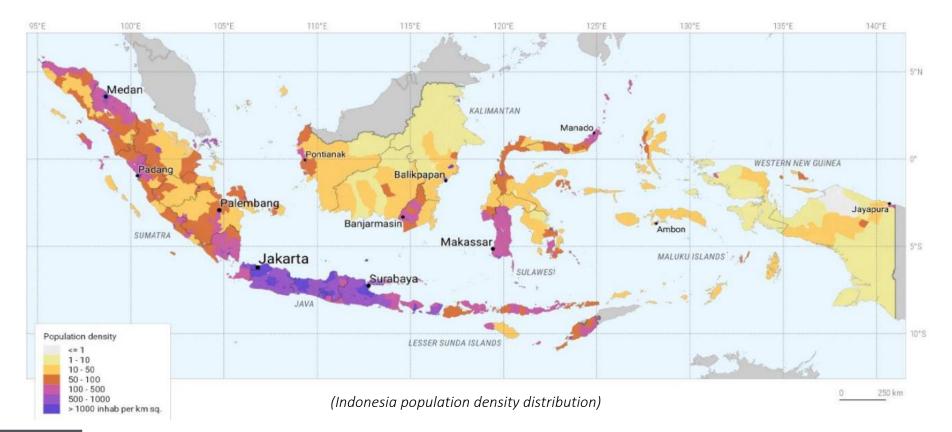

Emissions from electricity and heat, transport and manufacturing and construction have been increasing in Indonesia


Reference

Forestry contribution to Net Zero has highly fluctuated due to crucial illegal deforestation, which the government is still addressing

Indonesia's Forestry Sector

In Indonesia, renewable energy capacity will nearly double in the next 10 years


Renewable energy capacity prospect in Indonesia

31 Source: Indonesia's Electricity Business Plan 2021-2030 (RUPTL)

Reference One of key challenges to accelerate solar power is the land limitations in main grid system in Java-Sumatera, which is highly populated

Indonesia Population Distribution

Latest

- As seen in the Figure above, the upmost dense population is located in Java Island that consist of > 1000 inhabitant per km sq. With that amount of density, it is very challenging to develop new renewable energy within the main electricity grid in Java. Condition
 - According to PLN, it still possible to build solar power plant in the Eastern Region of Java since less population density & still be able to be connected to Indonesia's main electricity grid

32 Source: Data Collection Survey on Power Sector in Indonesia for Decarbonization by Japan International Cooperation Agency (JICA) March 2022

Reference

Geothermal challenges is predominantly due to high cost for investment & operations as well as high risk for technical & safety

Challenges in Promoting Geothermal Development

High CAPEX	 In geothermal development, many large risks exist in development. Long-term surveys and large-scale investment are required, as with the development of oil, natural gas and mineral resources. Three large issues exist regarding geothermal development: Large initial investment, generation cost usually exceeds selling price. Characteristics of geothermal resource greatly affect profit on projects. Long lead time before development and large initial investment. 				
High OPEX	Generation costs of geothermal power plants exceed those of coal-fired power plants, and both are base load generation. Low carbonization might increase the generation costs of coal-fired power plants, and geothermal power plants might become superior				
High Technical Risk	 At each stage of geothermal development, which consists of survey, development, and operation, important technical risks exist, which may affect the development costs and power output, and be directly linked to profitability, as follows: a) <u>Survey stage:</u> Difficulty in constructing access roads, difficulty in surveying due to characteristics of the survey area, Success rate for survey well drilling b) <u>Development stage:</u> Depth of geothermal potential, productivity of geothermal potential, properties of geothermal fluid, concentration of non-condensed gas, success rate for production well drilling, increase in costs for construction and equipment c) <u>Operation stage</u>: Attenuation of steam amount, Capacity factor decrease 				

Source: RUPTL PLN 2021-2030, Ministry of Energy & Resource report

Reference RUPTL by PLN shows the long-term electricity generation plan in Indonesia

Indonesia's Electricity Business Plan (PLN RUPTL) until 2030

Document Name	Indonesia's Electricity Business Plan 2021-2030 (RUPTL*1)				
Year of publishment	2021	Issued by	PLN		
Background	 PLN, an Indonesian national power company, updates its electricity business plan every year, which requires an approval of The Minister of Energy and Mineral Resources 				
Purpose	Shows PLN's business plan of electricity generation, distribution and transmission project developments for the next 10 years (2021-2030)				
Summary Source: PLN (2021) "	 RUPTL 2021-2030 marks a turning point in the country's energy transition as, for the first time, renewable energy development accounts for additional 20 GW of total installed capacity between 2020 to 2030 The plan comes in support of the Government's objectives to achieve a 23% share of renewable energy in the energy mix by 2025 (as stated in the National Electricity General Plan or RUKN) as well as to reduce greenhouse gas emissions by 29-41% by 2030 and achieve Net-Zero emissions by 2060 in line with the county's Nationally Determined Contributions The key plan is to shift reliance away from fossil fuels, with larger renewable capacity additions planned. Therefore, within RUPTL most renewables have their own initiatives to accelerate its development In addition, PLN is also stated its commitment to support energy-related infrastructure such as smart grid, charging station for EV, applying latest energy technology (e.g., CCS, coal bed methane & gasification) 				
Source: PLN (2021) " ロジェクト	RENCANA USAHA PENYED	IAAN TENAGA LISTRIK", HHP L	aw Firm (2021) 「インドネシア: 国有電力公社の新事業計画 - 高し	い期待と『環境により優しい』プ	

³⁴ *1: RUPTL = RENCANA USAHA PENYEDIAAN TENAGA LISTRIK

Reference

PLN has introduced several program to accelerate renewable energy adoption, which are specified for each type of renewables

Indonesia's Electricity Business Plan (PLN RUPTL) until 2030

RUPTL 2021-2030 Key Points		The development of renewable power plant is intended to electrify remote areas & reduce the use of fossil fuel (e.g. coal, oil, gas) as Indonesia's commitment to achieve the target of utilizing Renewable Energy around 23% by 2025.
	Solar Energy Program	 As an effort to accelerate the development of solar energy, the Government/PLN has introduced the following plan: The utilization of rooftop solar power plants (Rooftop PV) is regulated through the Minister of Energy and Mineral Resources Regulation Number 26 of 2021 PLN also plans to develop Solar Panel in the following locations: Ex-Mining & Dam/Water Reservoir for Floating Solar Plant De-dieselization Power Plant Program
	Geothermal Energy Program	 The Geothermal Law was enacted in 2003 as a "Geothermal Development Road Map" The 2015 revision of the Geothermal Law determines the geothermal targets to be 1,200 MW in 2020 The government aims to achieve the target by introducing initiatives such as Geothermal Investment Funding (Geothermal Resource Risk Mitigation (GREM) & Geothermal Exploration Upstream Development Project (GEUDP) & IPPs Partnerships
	Biomass Energy Program	 Implementation of coal power plant co-firing by utilizing biomass (wood pellets, saw dust etc.), with an average portion of 10% for Java-Bali (biomass requirement of up to 14 million tons/year) The above trial implementation for co-firing will be held between 2026-2028.
	Wind Energy Program	Over the next 10 years, Indonesia plans to install just under 600 MW, but in the future, it may be able to increase capacity in some areas with low wind speeds, or offshore, by improving turbine efficiency, including developing technology for low-speed wind turbines.

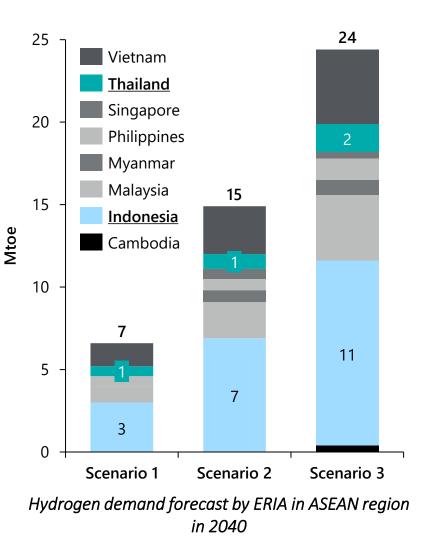
Indonesian islands operate power grids independently, without being connected with each other

Indonesia's Power Grid Overview

① Desktop Research Energy trend Outlook for hydrogen Policy Technical readiness and players

Indonesia is considered to led hydrogen market in SEA while Thailand is still within the early stage of hydrogen development

Hydrogen Demand in Thailand and Indonesia

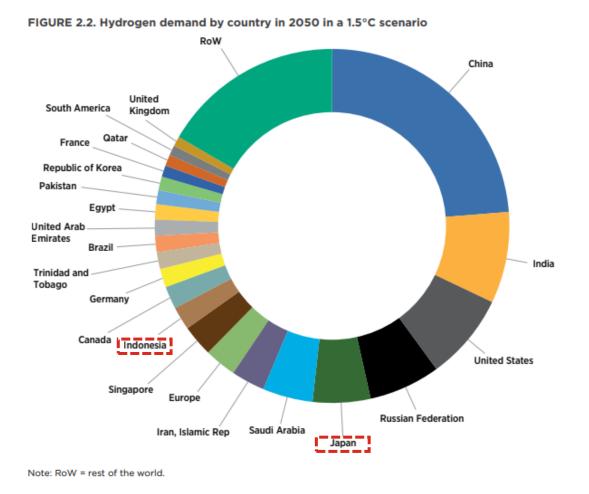

• FRIA^{*1} have forecasted scenario-based calculations on the potential demand for hydrogen by 2040, using the following scenarios for power generation:

Hydrogen				
Demand		% of hydrogen	% of natural gas	
Scenario	Scenario 1	10%	90%	
	Scenario 2	20%	80%	
	Scenario 3	30%	70%	

 Overall, by 2040, the potential ASEAN hydrogen demand is 7 Mtoe (Scenario 1), 15 Mtoe (Scenario 2) and 24 Mtoe (Scenario 3)

Indonesia is leading with 3 Mtoe (Scenario 1), 7 Mtoe (Scenario 2) & 11 Mtoe (Scenario 3) while Thailand is only managed to gain demand of 1 Mtoe (Scenario 1), 1 Mtoe (Scenario 2) & 2 Mtoe (Scenario 3)

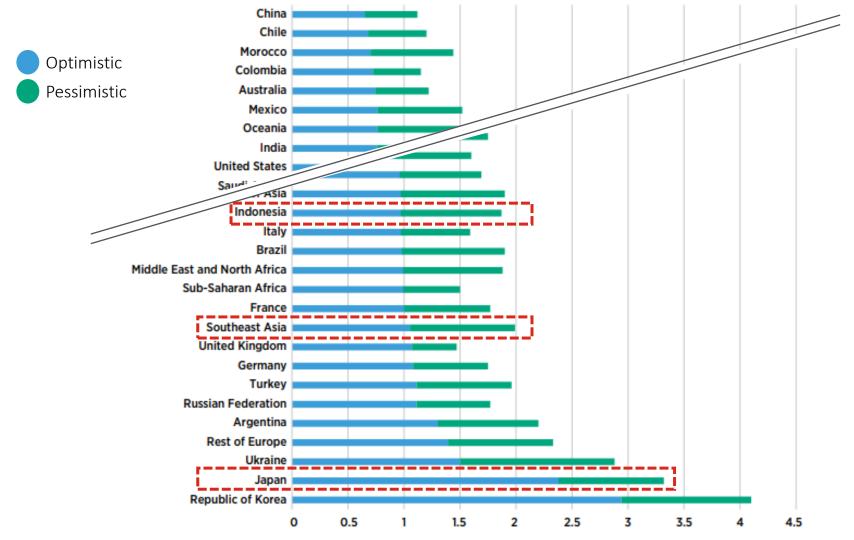
Indonesia has the largest hydrogen demand potential amongst ASEAN member countries, followed by Vietnam and Malaysia


Source: Demand and Supply Potential of Hydrogen Energy in East Asia ERIA, JICA Indonesia Decarbonization Survey (2022) *1: Economic Research Institute for ASEAN (ERIA)

Key

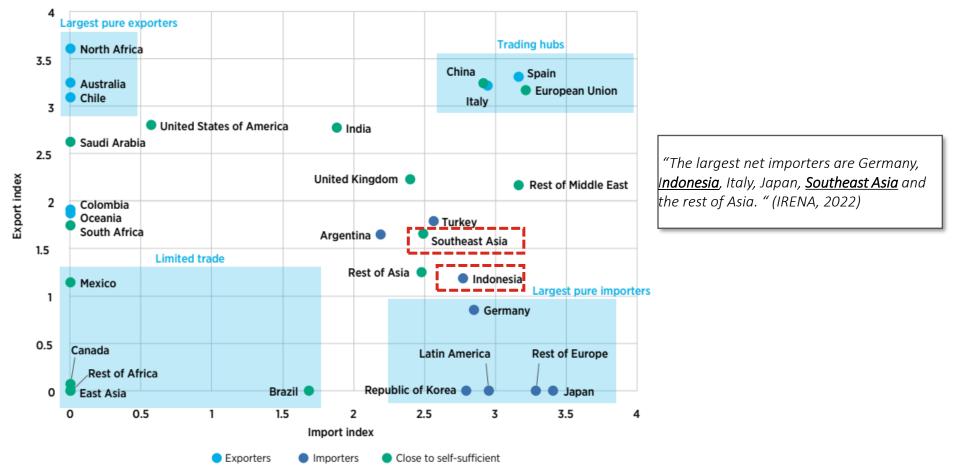
Takeaway

Reference In 2050, Indonesian hydrogen demand is expected to be the 10th in the world.


Hydrogen demand by country in 2050 in a 1.5°C scenario

According to IRENA, hydrogen production cost in Thailand and Indonesia will be 1~2 USD/kg in 2050.

Levelized cost of hydrogen in 2050



40 Source: Global hydrogen trade to meet the 1.5 °C climate goal: Part III – Green hydrogen cost and potential,, International Renewable Energy Agency (2022)

Indonesia will be one of the large importers of hydrogen, and southeast Asian countries in general fall in-between close-to-self-sufficient and importers.

Volumes of hydrogen export and import for regions in 2050 (optimistic)

FIGURE 3.17. Volumes of hydrogen export and import for regions around the world in 2050 with *optimistic* technology assumptions

1Desktop Research

Energy trend Outlook for hydrogen Policy Technical readiness and players

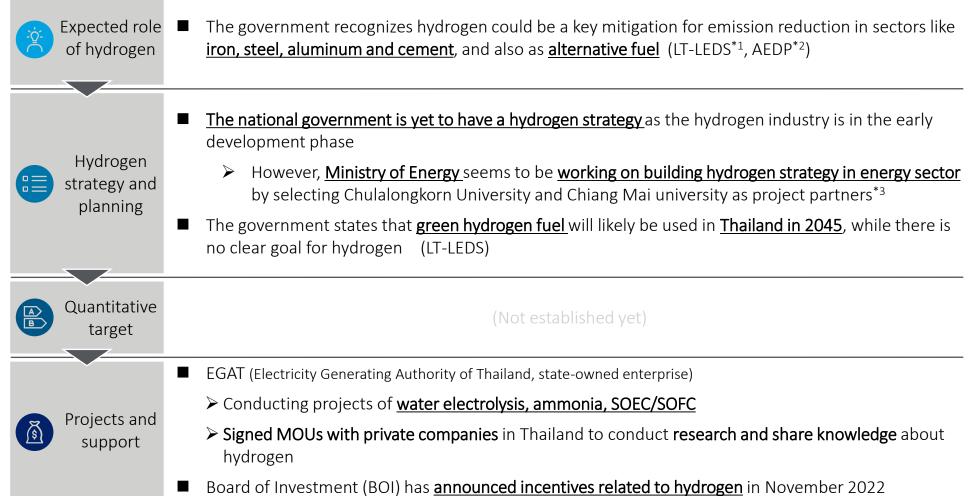
Hydrogen policy will be surveyed from the concept to implementation, namely from positioning to budget for Thailand and Indonesia

Research process on hydrogen-related policy

Hydrogen's Positioning	Positioning	 To understand hydrogen's positioning in environmental policy by studying National Determined Commitment (NDC), a mid-term target based on the Paris Agreement and Long- term strategy. To survey emission reduction target
Hydrogen and fuel cell-related Policy	Policy	 To investigate the policy frameworks (strategies and plans) related to hydrogen and fuel cell To identify and scrutinize related entities that implement policies
Hydrogen's Target and Roadmap	Target	 To understand level of focus on hydrogen and fuel cell policies quantitatively by survey of hydrogen and fuel cell adoption target
Hydrogen-related National Budget	Budget	• To understand the degree to which Thailand and Indonesia are promoting these measures and the types of projects that are being focused on by investigating the budgets for R&D and demonstration projects

Neither Thailand nor Indonesia has any hydrogen strategy. However, both governments have started projects to promote hydrogen

Summary


	Thailand	Indonesia
Overview	 There is no clear vision for hydrogen set yet LT-LEDS^{*1}, however, recognizes hydrogen as a key mitigation for emission reduction in power, industry and transportation sectors In addition, LT-LEDS states that green hydrogen fuel will likely be used in Thailand in 2045 	There is no strategy dedicated for hydrogen; however, the government expects green hydrogen to be the main pillar of industrial decarbonization in Indonesia up until 2060
Hydrogen Strategy (strategy and plans dedicated for hydrogen and fuel cell)	N/A However, Ministry of Energy seems to be working on building hydrogen strategy in energy sector by selecting project partners	N/A However, DPR ^{*2} & MEMR ^{*3} developed proposal of RUU-EB- ET ^{*4} Draft Plan to support Green Hydrogen implementations. The government has also appointed several ministry-and- state-owned Enterprises (SOEs) to develop hydrogen to be used in the energy sector as well as its production to be utilize in electricity & electric vehicle
Hydrogen quantitative target	N/A However, according to the most recent AEDP 2018, hydrogen is included as part of the "Alternative Fuels" category with a set target goal of 10 kilotons of oil equivalent (KTOE) in total by 2036	N/A According to the government's estimates, green hydrogen generation capacity is projected to reach approximately 52 GW by 2060.
Hydrogen project and support	 EGAT, a state-owned company, conduct studies and have partnerships with other companies Board of Investment (BOI) has announced incentives related to hydrogen 	 Specific policy for hydrogen (e.g., Presidential Regulation No. 22/2017 on National Energy Plan (RUEN) Collaboration between ministry, SOEs & private sectors

*1: long-term low emission development strategy *2: People's Representative Council of the Republic of Indonesia (Indonesia's Legislative Institution) *3: Ministry of Energy & Resources

Thailand

The Thailand Government doesn't have a clear vision of hydrogen yet while they have started hydrogen related projects including water electrolysis

Policy overview - Thailand

Source: Thailand's Long-term Low Greenhouse Gas Emission Development Strategy, Alternative Energy Development Plan

*1: Long-term Low Greenhouse Gas Emission Development Strategy *2: Alternative Energy Development Plan *3: According to announcement on January 19, 2023

Thailand's LT-LEDS states that green hydrogen will be important in energy, industry and transport sectors

Hydrogen in Thailand's LT-LEDS

THATLAND'S LONG-TERM LOW GREENHOUSE GAS EMISSION DEVELOPMENT STRATEGY (REVISED VERSION)

November 2022

Long-Term mitigation actions related to hydrogen in energy sector

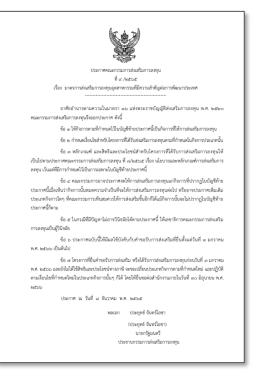
Research and development of hydrogen can be one of the key mitigation actions

technologies related to hydrogen and green hydrogen are considered to achieve GHG emissions by 2065

From the net zero GHG timeline presented in the LT-LEDS, green hydrogen fuel will likely be used in Thailand in 2045

Long-Term mitigation actions related to **hydrogen in industry sector**

Green hydrogen will be important in sectors like iron, steel, aluminum and cement



Long-Term mitigation actions related to **hydrogen in transport sector**

- Decarbonization opportunities in the transport sector include hybrid, plug-in hybrid, electric and FCEV
- Cost of hydrogen-powered FCEV is expected to be lower in the near future, similar to costs of EVs

Board of Investment has announced new tax incentives for hydrogen-related investment and research

Announcement of BOI No. 8/2565

The Board of Investment (BOI) published the "Announcement of BOI No. 8/2565: Promotion of investment in industries that are important to national development" in November 2022

BOI is a government body that helps in promoting direct investment in Thailand by devising investment policies

BOI announced new incentives for hydrogen-related investment and research

- Apart from investment in EVs (including FCEVs), following activities are eligible for tax exemption up to 10 – 13 years starting in January 2023:
 - ✓ Hydrogen and its derivatives from water using renewable energy
 - ✓ Electricity generating from hydrogen

Indonesia

The government has offered several programs & policy to achieve carbon neutrality by 2060

Policy Overview – Indonesia

	NDC	Long-term target	2	
Target of	 Reducing 31.89% from 		Positioning	 Hydrogen is expected to be the main pillar of industrial decarbonization in Indonesia
GHG emission reduction	 the BAU level by 2030. Conditional target up to 43.20% Sep 2022 updated (enhanced cover letter) 	 Carbon neutrality by 2050 and net-zero by 2060 	Policy	 Long-term Strategy for Low Carbon and Climate Resilience 2050 Electricity Supply Business Plan (RUPTL 2021-2030) Energy Law No. 30/2007, 2009 Government Regulation No. 79/2014 on National Energy Policy (KEN) Presidential Regulation No. 22/2017 on National Energy Plan (RUEN) New and Renewable Energy Bill (RUU EB-ET)
3 Overview of Hydrogen Policy	 Energy (RUU EB-ET) Draft The government also has Pertamina, Perusahaan Lis as its production of green 	Plan to support Green Hydrog appointed several Ministry (e. strik Negara (PLN)) as main sta hydrogen to be utilize in elec ernment's estimates, green hy	gen implementa g., MEMR, Indu akeholder to dev tricity.	rces (MEMR) developed proposal of the New and Renewable ations strial, Finance) & State-Owned Enterprises (SOEs) (e.g., velop green hydrogen to be used in the energy sector as well tion capacity will reach approximately 52 GW by 2060 with a
4 Quant. target	, .	ment is targeted to adopted cles and 400,000 e-cars (20%	5 Policy Implement ation	 No detail on budget information for hydrogen development, but the government supports projects to implement FCVs such as R&D and feasibility studies In addition, recent G20 updates announced that a coalition of developed nations, comprising the US and Japan, launched a \$20 billion climate finance package for Indonesia to support's its goal to achieve carbon neutrality
50				

Green hydrogen is foreseen as one of main energy sources to support decarbonization especially in industry due to its abundant potential

Indonesia's Green Hydrogen Overview 23

Strategy & Plan	 Green hydrogen is expected to be the main pillar of industrial decarbonization in Indonesia because the industrial sector is the first and main target for accelerating energy sources, which will contribute to the energy transition. Therefore, the Indonesia's Legislative Institutional (DPR) & Ministry of Energy & Resources (MEMR) developed proposal of the New and Renewable Energy (RUU EB-ET) Draft Plan to support Green Hydrogen implementations Currently, hydrogen utilization is almost completely for the chemical and refining utilization sub-sectors on desulfurization in the oil refining process, as an additive in the steel making process, and other industrial purposes The potential of green hydrogen production in Indonesia was 1,895 kT/year in 2021, as concluded by a study from the Ministry of Energy and Mineral Resources of the Republic of Indonesia and the German Agency for International Cooperation (GIZ) According to the government's estimates, green hydrogen generation capacity will reach approximately 52 GW by 2060 with a constant increase from 328 MW in 2031. That would be a 10% contribution to the total power generated from clean energy in 2060 The Indonesian government, Ministry of Energy & Resources (MEMR), estimates that the country would require US\$25.2 billion in investments to underpin green hydrogen development from 2030 to 2060. Mass adoption would be at its peak in 2050
Government Support	 Indonesia is in constant development of progressive policy breakthrough on green hydrogen energy-related regulations. The government also has appointed several Ministry (e.g., MEMR, Industrial, Finance) & State-Owned Enterprises (SOEs) (e.g., Pertamina, Perusahaan Listrik Negara (PLN)) as main stakeholder to develop green hydrogen to be used in the energy sector as well as its production of green hydrogen to be utilize in electricity.

Though FCV is not yet established in Indonesia, the government has shown a strong support for electric vehicle usage to achieve decarbonization

Quantitative Target and Support for FCV **45**

Latest Condition	 Fuel cell vehicle (FCV) not yet available in Indonesia However, several major automotive leader, such as Toyota Indonesia, is preparing on introducing its FCV line-up called, Toyota Mirai FCV to the public if the infrastructure for charging stations is already established
Quantitative Target	 There is no exact quantitative target available specifically for FCV However, the government has set an ambitious target on the adoption of electric vehicles with 2.1 million e-motorcycles and 400,000 e-cars (20% of all locally manufactured cars) expected to take the road by 2025. At present, the government, in collaboration with Perusahaan Listrik Negara (PLN), is preparing fiscal infrastructure and facilities to support the effort to enter the electric motor vehicle industry, with 8,000 charging stations ready in 2025 and 12,000 charging stations by 2030 As of November 2022, according to The Association of Indonesia Automotive Industries (GAIKINDO), the total number of 4W EV sold was 2,794 units with Battery Electric Vehicle (BEV) sold was 1,965 units and Hybrid Electric Vehicle (HEV) sold was 829 units while the number of charging station was 346 units spread throughout 295 across Indonesia
FCV Regulatory Support	 As a form of support for FCV adoption, the government has introduced policy in Presidential Regulation No. 22/2017 on National Energy Plan (RUEN) that further details the preparation of FCV prototypes, collaboration with both public & private parties for FCV research & development, FCV feasibility study on its infrastructure as well as potential incentives for FCV utilization in Indonesia.

Reference

Several policies introduced by the government on decarbonization roadmap, which include hydrogen implementation

Policy Implementation (incl. budget info)

	Detailed Information	Policy Framework	Budget
Long-term Strategy for Low Carbon and Climate Resilience 2050	 The LTS-LCCR 2050 provides long-term national policy direction on climate change, with the pathway scenario based on the best scenario available 	country's total power demand, and coal + CCUS alone will account for 30%.	• None
Electricity Supply Business Plan (RUPTL 2021- 2030)	 The government and PLN (Persero) provides a larger portion of new renewable energy power plants in the 2021 - 2030 	 In the RUPTL, the portion of renewable energy power plants reaches 48% while fossil fuel power plants' reaches 52%. To reach 23% new renewable energy mix in 2025, the government has decided to no longer receive proposals for new coal-fired power plants, except for ones that have entered the financial closing stage or have commenced construction Various strategies are prepared to achieve the new renewable energy target, including by prioritizing solar power plants, boosting co-firing in coal fired power plants, and replacing fossil fuel with new renewable power plants. 	• None

53 Source: Indonesia's LTS-LCCR Plan 2050 (2022), Indonesia's RUPTL 2021-2030 (2022), Several News Articles

Reference

Several policies introduced by the government on decarbonization roadmap, which include hydrogen implementation

Policy Implementation (incl. budget info)

	Detailed Information	Policy Framework	Budget
Law 30/2007- 2009 on Energy Law	 General emphasis on energy security, sustainable development, energy resilience, and environmental preservation 	 The government enact a Law on Energy as a legal basis and guidelines in the framework of regulation and management in the energy sector, which includes: energy regulation which consists of control and regulation of energy resources; the authority of the Government and regional governments in regulating the energy sector; fostering and supervising management activities in the energy sector (such as research and development) 	• None
Government Regulation No. 79/2014 on National Energy Policy (KEN)	 Targets an increase of NRE share in primary energy mix to 23% in 2025 and 31% in 2050 	 Reducing energy exports to fulfill national needs, especially gas and coal, as well as set a time limit for stopping exports, which was later enacted in early January 2022 Progressive application of electricity tariffs through a feed-in- tariff mechanism for renewable energy, which was updated later in September 2022 The target electrification ratio is targeted to reach 85% in 2015 and close to 100% in 2020. Meanwhile, the ratio of household gas usage reaches 85% in 2015 In 2025, the portion of renewable energy will be 23%, oil 25%, coal 30% and gas 22% while in 2050 the share of renewable energy will be 31%, oil 20%, coal 25% and gas 24% 	• None

Reference

Several policies introduced by the government on decarbonization roadmap, which include hydrogen implementation

Policy Implementation (incl. budget info)

	Detailed Information	Policy Framework	Budget
Presidential Regulation No. 22/2017 on National Energy Plan (RUEN)	 Sets up a development plan until 2050, specifically including preparation for hydrogen usage as FCV (Fuel Cell Vehicle) 	 Developing technology for the production and use of synthetic fuels and hydrogen for transportation Establish regulations for synthetic and hydrogen fueled cars for public transport and private vehicles Building a hydrogen-fueled motorized vehicle industry (fuel cell) Provide fiscal incentives for gas, synthetic fuel and hydrogen fueled vehicles, in accordance with applicable taxation and customs laws and regulations Developing vehicle prototypes (synthetic and hydrogen fueled), solar powered and electric/hybrid powered, to commercial readiness 	• None
New Energy and Renewable Energy Law (RUU EB-ET) (Draft)	 Regulates New Renewable Energy (NRE) development, including pricing, incentives, etc. In the latest draft, hydrogen is mentioned as a new energy. 	 Based on the latest draft bill, it is known that new energy and renewable energy definitions are separated. That way, the Bill on New and Renewable Energy (EBT) has now changed its name to the New Energy and Renewable Energy Bill. In the latest draft of the bill, article 9 states that new energy sources consist of several types. Among them are nuclear, hydrogen, coal bed methane, coal liquefaction, coal gasification; and other New Energy Sources. Meanwhile, article 26 states that the provision of New Energy by the Central Government and/or Regional Governments is prioritized in underdeveloped areas, remote areas, and rural areas by using local New Energy Sources. 	• None

Reference Singapore's National Hydrogen Strategy shows the approach to utilize hydrogen as its main renewable source

Singapore's National Hydrogen Strategy

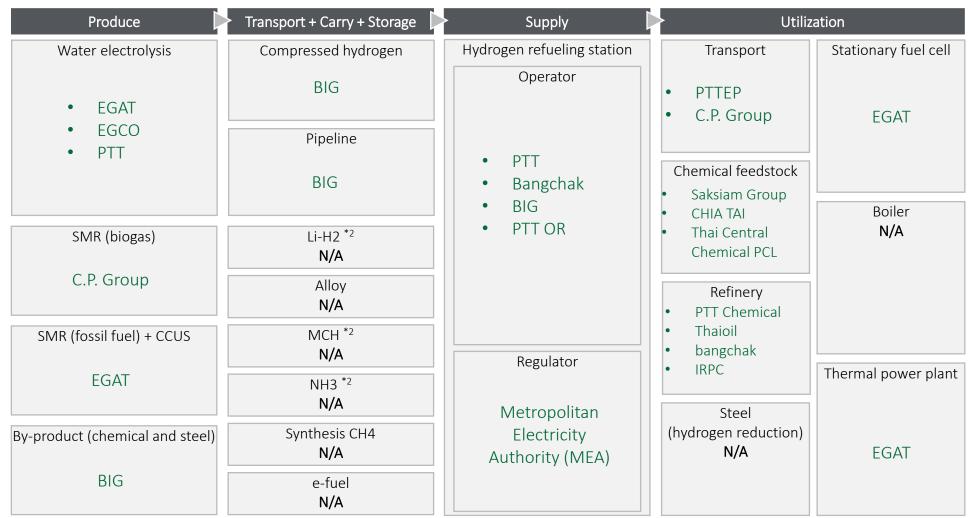
Document Name	Singapore's National Hydrogen Strategy		
Year of publishment	Oct 2022 Issued by Ministry of Trade & Industry		
Background	For Singapore, hydrogen will complement and diversify Singapore's power mix & it is estimated that hydrogen could supply up to half of Singapore's power needs by 2050		
Purpose	Shows Singapore's hydrogen potential in various industry (such as power generation, indumnation, aviation) & framework in order to advancing Hydrogen's transition usage transition		
Summary	 Singapore will pace hydrogen deployment and infrastructure in line with technological and global progress, implementing five key actions: Experiment with the use of advanced hydrogen technologies at the cusp of commercial readiness through pathfinder projects Invest in research and development to unlock technological bottlenecks Pursue international collaborations to enable supply chains for low-carbon hydrogen Undertake long-term land and infrastructure planning Support workforce training and development of our broader hydrogen economy. 		

Source: Singapore's National Hydrogen Strategy (Singapore's National Hydrogen Strategy (mti.gov.sg)) 2022

1Desktop Research

Energy trend Outlook for hydrogen Policy Technical readiness and players

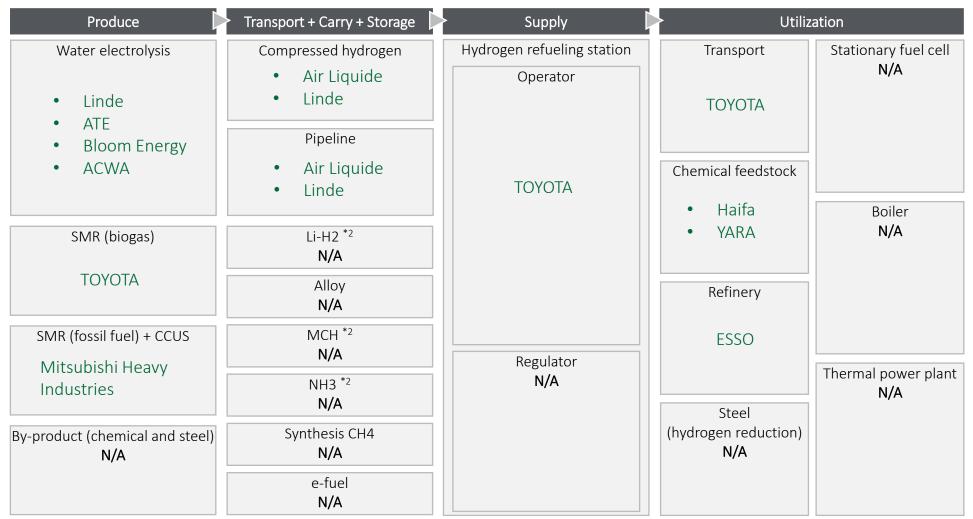
Both Thailand and Indonesian companies have already started several hydrogen related projects by collaborating internationally


Summary

		Thailand	Indonesia
Current production and use of hydrogen		Currently, it is mostly used in chemical and oil refining sector	 Currently, hydrogen utilization is almost completely for chemical and oil refining, steel making process, and other industrial purposes
	Production	EGAT brought new technology, Wind Hydrogen Hybrid System and Fuel Cell, which allows them to store electricity produced from wind turbines in form of hydrogen and convert it into electricity through fuel cell when needed	Pertamina & Pertamina Geothermal Energy (PGE) plans to produce up to 100 kg/day of green hydrogen from Ulubelu Geothermal Power Plant to supply its polypropylene factory in Plaju and supply the needs of the local petrochemical industry
Major hydrogen	Carry, Storage and Supply	First hydrogen fueling prototype station began operating in November 2022	Pertamina NRE, Krakatau Steel, and RAJA collaborate to develop Green Hydrogen Pipelines for distribution from upstream/production to user
projects	Use	 EGAT has signed an MOU with ATE, EGCO Group, and Bloomenergy to develop hydrogen with SOFC and SOEC in December 2021 EGAT has signed an MOU with MHI to study clean energy technologies 	 A consortium, involving PT Panca Amara Utama, a chemical company, Mitsubishi and the Institut Teknologi Bandung announced trial plans to mass produce ammonia in combination with Carbon Capture Storage (CCS) Three major SOEs: PLN, Pertamina, and Pupuk Indonesia just recently launched the Green Industry Cluster which aims to develop green and blue ammonia in the long term.

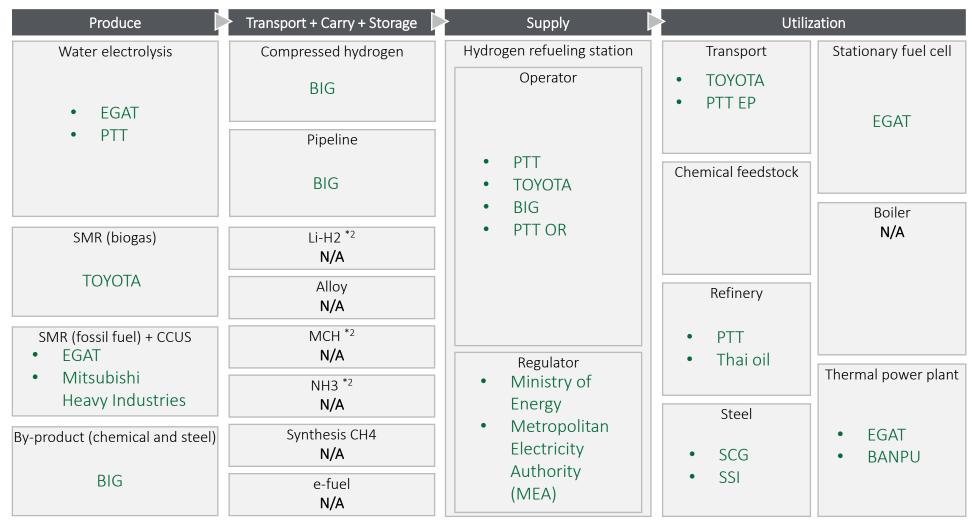
Thailand

Companies in Thailand cover all the parts of hydrogen supply chain except for advanced carry and storage technologies


Local hydrogen player map in Thailand^{*1}

*1: Note that hydrogen players do not just include players that have core technologies but also those who are engaged with related projects. *2: Hydrogen careers that are likely to be options for hydrogen shipping

Companies in Thailand cover all the parts of hydrogen supply chain except for advanced carry and storage technologies


External/global hydrogen player map in Thailand*1

*1: Note that hydrogen players do not just include players that have core technologies but also those who are engaged with related projects. *2: Hydrogen careers that are likely to be options for hydrogen shipping

Companies in Thailand could cover all the parts of hydrogen supply chain except for advanced carry and storage technologies

Potential hydrogen player map in Thailand*1

*1: Note that hydrogen players do not just include players that have core technologies but also those who are engaged with related projects. *2: Hydrogen careers that are likely to be options for hydrogen shipping

There are larger potential in each sector in Thailand

The potential number of companies in Thailand

for rail and logistics companies (freight transport and courier)

Byproduct and SMR hydrogen are both in mobilization status, while water electrolysis is in R&D phase

Hydrogen Production in Thailand		Status: Not yet R&D	Demonstration scaling mobilization
Water electrolysis		SMR (biogas)	SMR (fossil fuel) + CCUS
Status	R&D	R&D	R&D
Status Detail	 EGAT signed an MOU with EGCO, ATE, and Bloomenergy to study about SOEC/SOFC In the future, Linde is planning to produce hydrogen by doing water electrolysis 	 True Leasing (CP's transportation service business) has partnered with Isuzu Motors, Toyota subsidiary Hino Motors to turn farm waste into fuel for hydrogen- powered car 	'
Challenge	Some challenges, which include: ^{*1} 1) Incentives & technology uncertainty 2) Limitations in regulatory support & technical standard	 Some challenges, which include: *1,2 1) Incentives & technology uncertainty 2) Limitations in regulatory support & technical standard 3) Negative perspective towards waste-to-energy 	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Incentives & technology uncertainty 3) Limitations in regulatory support & technical standard
Potential	The state enterprise has an interest in water electrolysis. In addition, Linde's joint venture, ITM Linde Electrolysis (ILE), is a supplier of PEM electrolyzer technologies	This project could possibly be expanded into other countries	EGAT aims to apply technologies studied with powerplant in Thailand, so it could potentially be scaled
Player	 EGAT, EGCO, ATE, and Bloomenergy Linde 	1. Toyota and C.P. Group	1. EGAT and MHI

Source: *1 The Future of Hydrogen by IEA 2022 (The Future of Hydrogen (windows.net), *2 Thailand's 2nd Updated Nationally Determined Contribution (Thailand's 2nd Updated NDC (windows.net))

Byproduct and SMR hydrogen are both in mobilization status, while water electrolysis is in R&D phase

Hydrogen	Production in Thailand	Status:	Not yet	R&D	Demonstration	scaling	mobilization
	Byproduct (chemical and steel)						
Status	Mobilization						
Status Detail	 There has been hydrogen production for industrial use with byproduct method in Thailand 						
Challenge	 Some challenges, which include: *1 Steel production in Thailand is decreasing, which might decrease hydrogen Less incentives for hydrogen utilizations 						
Potential	Total steel production in November 2022 is about 1.76M tons, which decreases from November 2021 according to Iron and Steel Institute of Thailand						
Player	1. Bangkok Industrial Group (BIG)			,, <i>.</i> ,			

Source: *1 Iron and Steel Technology Roadmap by IEA 2022 (Iron and Steel Technology Roadmap - Towards more sustainable steelmaking (windows.net)

Li-H2 seems to be not yet available in Thailand

Hydrogen Carry and Storage in Thailand (1/3)		Status: Not yet R&D	Demonstration scaling mobilization		
Compressed hydrogen		pipeline	Li-H2		
Status	mobilization	Not yet	Not yet		
Status Detail	Some hydrogen manufacturers supply hydrogen in compressed hydrogen form	Not known public information on pipeline	Not known public information on Li-H2		
Challenge	 Some challenges, which include: *1 1. Expensive method of transport, which increase hydrogen price 2. Limited development plan for hydrogen infrastructure by government 	Some challenges, which include: ^{*2} 1. High R&D cost 2. Limited expert and knowledge 3. Limited incentive from the government (BOI)	Some challenges, which include: ^{*2} 1. High R&D cost 2. Limited expert and knowledge 3. Limited incentive from the government (BC		
Potential	This method has long been used with other gases	Not known public information about potential	Not known public information about potential		
Player	 Air Liquide Bangkok Industrial Gas (BIG) Linde 	Not known public information about player			

Source: *1 Global Hydrogen Review by IEA 2022 (Global Hydrogen Review 2022 (windows.net), *2 Global Hydrogen Trade to Meet The 1.5 C Climate Goal by IRENA 2022 (Global hydrogen trade to meet the 1.5 C climate goal: Trade outlook for 2050 and way forward (irena.org)

Advance hydrogen carry and storage technology is not available in Thailand, and there are no players at this moment

Hydrogen Carry and Storage in Thailand (2/3)		Status: Not yet R&D	Demonstration scaling mobilization		
Alloy		MCH	NH3		
Status	Not yet	Not yet	Not yet		
Status Detail	No known public information on Alloy	Not known public information on MCH	Not known public information on NH3		
Challenge	Some challenges, which include: ^{*1} 1. High R&D cost 2. Limited expert and knowledge 3. Limited incentive from the government	Some challenges, which include: ^{*1} 1. High R&D cost 2. Limited expert and knowledge 3. Limited incentive from the government	Some challenges, which include: ^{*1} 1. High R&D cost 2. Limited expert and knowledge 3. Limited incentive from the government		
Potential	No known public information about its potential	No known public information about its potential	No known public information about its potential		
Player	No known public information about player Hydrogen Trade to Meet The 1.5 C Climate Goal by IRENA 202	No known public information about player	No known public information about player		

Advance hydrogen carry and storage technology is not available in Thailand, and there are no players at this moment

Hydrogen Carry and Storage in Thailand (3/3)		Status: Not yet R&D	Demonstration	scaling	mobilization
	Synthesis CH4	e-fuel			
Status	Not yet	Not yet			
Status Detail	No known public information on synthesis CH4	No known public information on e-fuel			
Challenge	Some challenges, which include: ^{*1} 1. High R&D cost 2. Limited expert and knowledge 3. Limited incentive from the government	Some challenges, which include: ^{*1} 1. High R&D cost 2. Limited expert and knowledge 3. Limited incentive from the government			
Potential	No known public information about its potential	No known public information about its potential			
Player	No known public information about player Hydrogen Trade to Meet The 1.5 C Climate Goal by IRENA 202	No known public information about player	ide outlook for 2050 an	d way forward (ire	pna ora)

Source: *1 Global Hydrogen Trade to Meet The 1.5 C Climate Goal by IRENA 2022 (Global hydrogen trade to meet the 1.5 °C climate goal: Trade outlook for 2050 and way forward (irena.org)

Hydrogen refueling station is in demonstration status, with a first prototype launched in Nov 2022 in Thailand

Hydrogen	Supply in Thailand	Status: Not ye	R&D	Demonstration scaling	mobilization
	Hydrogen Refueling Station				
Status	Demonstration				
Status Detail	 First hydrogen fueling prototype station was launched in November 2022 ^{*1} 				
Challenge	Some challenges, which include: ^{*2} 1. Limited hydrogen demand due to hydrogen-powered car is not widely used in Thailand				
Potential	 Results from the prototype station can be used to improve hydrogen stations in the future It can potentially be scaled if there is enough demand 				
Player	Collaboration among PTT, OR, Toyota and BIG				

Source: *1 Various News Articles (<u>Thailand to launch its first hydrogen filling station in Pattaya by year end - The Pattaya News</u>) *2 Thailand's Public Company Limited (PTT) Company Articles (<u>PTT</u> Public Company Limited: News : Launching Thailand's first hydrogen fueling prototype station, "PTT - OR - TOYOTA - BIG" joins forces to embark on future energy. (pttplc.com)

Hydrogen is utilized in chemical and refinery sectors in Thailand, while hydrogen usage in transportation industry is being studied

Hydrogen Utilization in Thailand		Status: Not yet R&D	Demonstration scaling mobilization		
Transportation		Chemical (feedstock)	Refinery		
Status	R&D	Mobilization	Mobilization		
Status Detail	 Toyota and C.P. group has signed an MoU to collaboratively turn farm waste into fuel for hydrogen-powered car 	 Currently, hydrogen utilization is almost completely for the chemical and refining, steel making process, and other industrial purposes 	 Currently, hydrogen utilization is almost completely for the chemical and refining, steel making process, and other industrial purposes 		
Challenge	Some challenges, which include: ^{*2} 1) Limited expert & knowledge	Some challenges, which include: ^{*1} 1) Lack of policies that promote hydrogen development	Some challenges, which include: ^{*1} 1) Lack of policies that promote hydrogen development		
Potential	The government has been promoting EV lately and households seem to be interested in EV/FCV/FCEV	Cereal production has increased dramatically over the past years, which can potentially result in an increase in agricultural products, including fertilizer	Thailand produces 532,328.59 barrels of oil per day as of 2016, and it ranks 29 th in the world		
Player	1. Toyota and C.P. Group Hydrogen Trade by IRENA 2022 (<u>Global hydrogen trade to me</u> d	Fertilizer producers such as Thai Central Chemical PCL., Saksiam Group, Chia Tai, Haifa, and Yara	 Thai Oil IRPC ESSO PTTGC Bangchak 		

Source: *1 Global Hydrogen Trade by IRENA 2022 (Global hydrogen trade to meet the 1.5 °C climate goal: Trade outlook for 2050 and way forward (irena.org) *2 Various News Articles (Hydrogen Countries' Clean Energy Transition in Road Transport Sector - News and Views : ERIA, The Future Lies In : EV? or FCEV? – Hyundai Motor Group TECH)

EGAT has experimented fuel cell technology with wind-hydrogen energy in Thailand

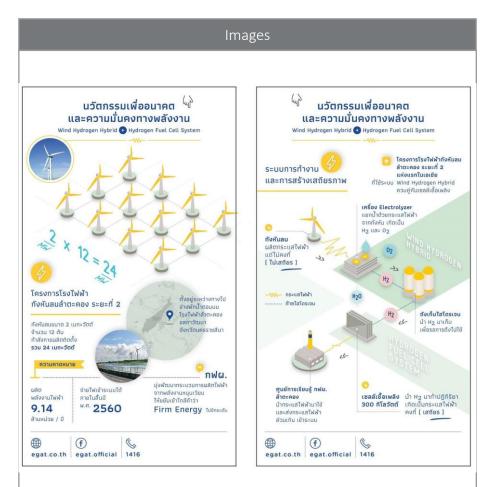
Hydrogen Utilization in Thailand		Status: Not yet R&D	Demonstration scaling mobilization		
Steel		Fuel cell (CHP)	Boiler		
Status	Not yet	Demonstration	Not yet		
Status Detail	No known public information on steel	 EGAT brought new technology, Wind Hydrogen Hybrid System and Fuel Cell, in which it converts hydrogen stored to electricity through fuel cell 	No known public information on boiler		
Challenge	Some challenges, which include: ^{*1} 1. High R&D cost 2. Limited expert and knowledge 3. Limited incentive from the government	1. High investment cost ^{*2}	Some challenges, which include: ^{*1} 1. High R&D cost 2. Limited expert and knowledge 3. Limited incentive from the government		
Potential	Not known public information about its potential	It could potentially be expanded or adapted in the future	Not known public information about its potential		
Player	Not known public information about its player	1. EGAT	Not known public information about its player		

Source: *1 Global Hydrogen Trade to Meet The 1.5 C Climate Goal by IRENA 2022 (Global hydrogen trade to meet the 1.5 °C climate goal: Trade outlook for 2050 and way forward (irena.org) *2 EGAT and Thailand Construction and Engineering News

Power Generation is in demonstration status as EGAT conducts ammonia power plant project

Hydrogen	Utilization in Thailand	Status:	Not yet	R&D	Demonstration	scaling	mobilization
	Power Generation						
Status	Demonstration						
Status Detail	 EGAT is experimenting with a project to use ammonia, which has nitrogen and hydrogen, as fuel together with coal to generate electricity and also in partnership with Mitsubishi for knowledge sharing 						
Challenge	Some challenges, which include: ^{*1} 1. High R&D cost 2. Limited expert and knowledge 3. Limited incentive from the government						
Potential	No known public data on the result of the trial research						
Player	EGAT						

Source: *1 Global Hydrogen Trade to Meet The 1.5 C Climate Goal by IRENA 2022 (Global hydrogen trade to meet the 1.5 °C climate goal: Trade outlook for 2050 and way forward (irena.org)

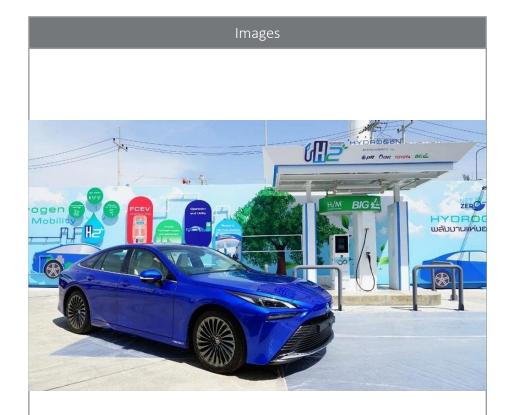

Multiple projects are in progress in Thailand, and two of them are located in the central part of Thailand

Hydrogen Project Map of Thailand

					y chain	in Status					
		#	Name of project	Produ ction	Carry /trans port	Use	Agree ment	R&D	FS	Demo	Com merci al
		1	Lam Ta Khong Wind Turbines							:	1
		2	Hydrogen Refueling Prototype Station			•			:	:	
		3	Hydrogen Fuel Project								
		4	TH-JP: Carbon Neutral Smart Park Project	•	•	•					
		5	Clean Energy Development								
2		6	Carbon Neutral Roadmap on the Usage of Hydrogen, Ammonia, and CCUS	•							
	¦ Projects without ¦	7	Feasibility Study on Ammonia Co- firing power generation	•							
	dedicated areas:	8	Green hydrogen and derivatives development project	•							
10	345 6789	9	Investment Opportunity in Solid Fuel Cells and Electrolyzer Technology Exploration	•		•					
3	Pii	10	Building a Clean Hydrogen and Ammonia Value Chain Derived from Renewable Energy Sources in Southern Thailand	•	•	•					

EGAT constructed 12 wind turbines with wind hydrogen hybrid system and fuel cell to stabilize electricity

1			
Name of project	Lam Ta Khong Wind Turbines		
Period	September 2016 – 2017 (construction), 2017 – Present (commercial operation)		
Place	Nakhon Ratchasima Province, Thailand		
Partners	 Energy Generating Authority of Thailand (EGAT) Hydrochina Corporation (Energy Company) Hydrogenics Europe N.V. (Hydrogen Technology Investor) Phraram 2 Civil Engineering Co., Ltd (developer) 		
Purpose	 It was constructed in response to governments policy on power stability by diversifying fuel mix and promoting renewable energy EGAT brought new technology, <u>Wind</u> Hydrogen Hybrid System and Fuel Cell, to conduct research and help stabilizing electricity generation from renewable energy 		
Budget	■ 42M USD (1.407B THB)		
Future plan	N/A		

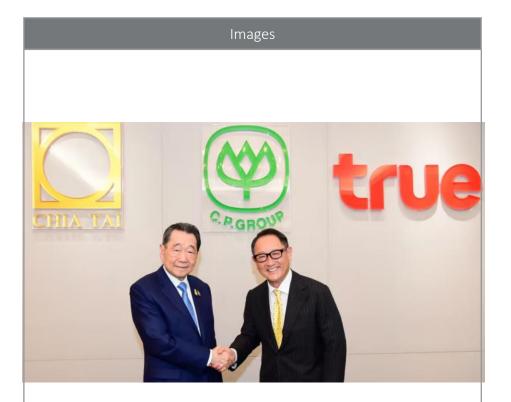


Lam Ta Khong, Nakhon Ratchasima, Thailand

74 Source: EGAT and Thailand Construction and Engineering News

PTT, OR, Toyota, and BIG collaborated on launching the first hydrogen fueling prototype station in Thailand

Name of project	Hydrogen Refueling Station		
Period	November 2022 - Present		
Place	Chonburi, Thailand		
Partners	 PTT Public Company Limited (Oil and Gas Company) PTT Oil and Retail Public Company Limited (OR) (Oil and Retail Company) Toyota Daihatsu Engineering and Manufacturing Co., Ltd (TDEM) (Engineering and Manufacturing Company) Toyota Motor Thailand Company Limited (TMT) (Vehicle Manufacturing Company) Bangkok Industrial Group (BIG) (Hydrogen Producer) 		
Purpose	 To align with Thailand's goal to achieve <u>carbon neutrality</u> and net zero emissions Data from this project will be gathered to <u>improve performance in the future</u> 		
Budget	■ 302,315 USD (10M THB)		
Future plan	Potentially more hydrogen fueling stations in the future		



Chonburi, Thailand

75 Source: PTT website, and news articles

Toyota and C.P. Group are collaborating on Hydrogen Fuel Project

2	
Name of project	Hydrogen Fuel Project
Period	December 2022 – unknown
Place	Thailand
Partners	 True Leasing (CP's transportation service business) Isuzu Motors (Vehicle Manufacturer) Toyota subsidiary Hino Motors (Vehicle Manufacturer)
Purpose	To study potential possibilities to <u>improve</u> <u>efficiency in the logistics industry</u> by turning <u>farm</u> <u>waste into fuel for hydrogen-powered car</u> To reduce carbon emissions in Thailand
Budget	N/A
Future plan	Expanding to other countries

CP Group Senior Chairman and Toyota Motor CEO

76 Source: Nikkei Asia

Thai and Japanese companies conducted a feasibility study to construct a carbon-neutral industrial park in Rayong funded

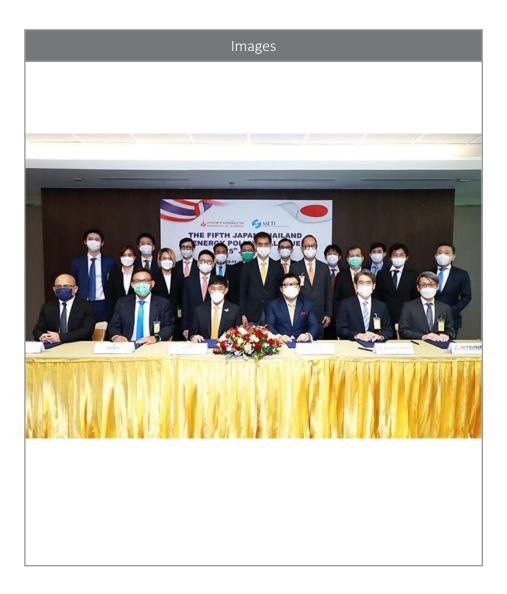
1				
Name of project	TH-JP: Carbon Neutral Smart Park Project	Images		
Period	Spring 2021 – Feb 2022			
Place	Rayong province, Thailand			
Partners	 Toyota Motor Thailand (vehicle manufacturer) Toyota Tsusho (trading company) Osaka Gas (gas company) Kansai Electricity (electricity company) IEAT (industrial park operator) PTT (gas company) PTTGC (chemical company) Bangkok Industrial Gas (industrial gas company) etc. 	Clean Energy Development WtW CO2 ZERO by Off-site Clean Electricity Transmission EEC Zone "TH-JP : Carbon Neutral Smart Park Project" Chachoengsao I.E Developing Developing Rayong : Palm Oil waste Neutral Smart Park Project		
Purpose	 To conduct a <u>feasibility study about "carbon-neutral</u> <u>industrial park"</u> (600 acre) near Map Ta Put in the east part of Rayong province The project aims to <u>construct a whole hydrogen supply</u> <u>chain within the park</u> including renewable power development and fuel cell vehicle introduction 	Rayong : Solar farm Developing Developing D		
Budget	N/A (funded in FY 2021 by METI)	Conceptual Image of Carbon-neutral Industrial Park		
Future plan	 Plan to start the construction of the park in 2023 to be in operation in 2025 Become a model case for industrial parks in other Southeast Asian countries such as Indonesia or Vietnam 			

EGAT and MHI signed an MOU to study clean energy technologies

C .			
Name of project	Clean Energy Development between Electricity Generating Authority of Thailand (EGAT) and Mitsubishi Heavy Industries (Thailand) Ltd.		
Period	November 2022 – 2025 (3 years)		
Place	N/A		
Partners	 Energy Generating Authority of Thailand (EGAT) Mitsubishi Heavy Industries (Industrial Machinery Manufacturer) 		
Purpose	 To develop and share knowledge on <u>clean</u> <u>energy technologies such as CCUS, hydrogen,</u> <u>and ammonia fuels</u> To <u>apply clean technologies with power</u> <u>plants in Thailand</u> to reduce carbon emissions to achieve carbon neutrality by 2050 		
Budget	N/A		
Future plan	This MOU aims to support the national goals of reducing 40 percent of GHG by 2030 and achieving carbon neutrality by 2050 and net-zero emissions by 2065		

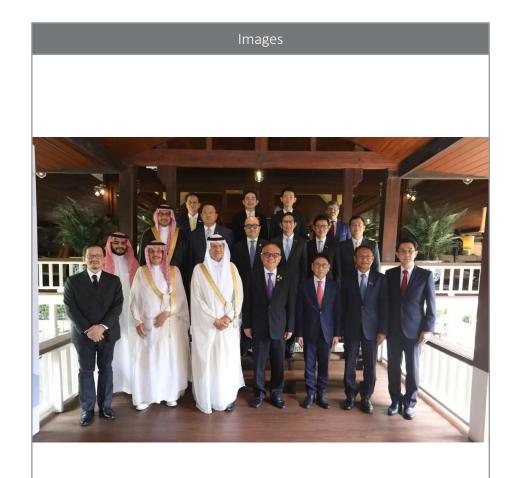
EGAT Headquarter, Bangkok, Thailand

ECGO Group signed an MoU with JERA Asia to study the use of hydrogen, ammonia, and CCUS and achieve its carbon neutral goal


6				
Name of project	Carbon Neutral Roadmap on the Usage of Hydrogen, Ammonia, and CCUS			
Period	January 2023 - unknown			
Place	Bangkok, Thailand			
Partners	 Electricity Generating Public Company Limited (EGCO) (Power Producer) JERA Asia Pte. Ltd. (Energy Services Provider) 			
Purpose	To study and research about <u>CCUS and its</u> <u>implication in Thailand</u> for decarbonization of EGCO			
Budget	N/A			
Future plan	EGCO to achieve carbon neutral goal by 2050			

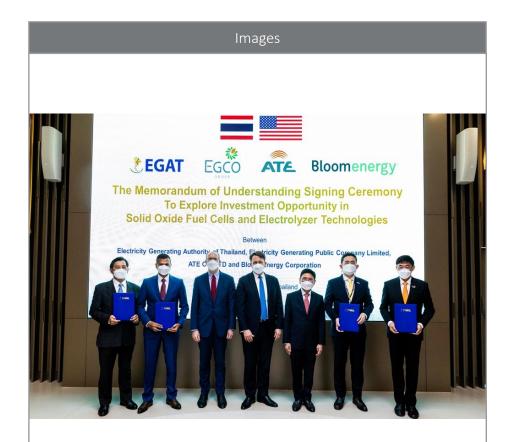
79 Source: EGCO Website

ECGO Group signed an MoU with companies to conduct feasibility study on ammonia co-firing power generation


7	
Name of project	Feasibility Study of Ammonia Co-firing Power Generation
Period	January 2023 - unknown
Place	Bangkok, Thailand
Partners	 Electricity Generating Public Company Limited (EGCO) (Power Producer) Banpu Power Public Company Limited (BPP) (Electricity Generator) BLCP Power Company Limited (Electricity Generator) JERA (Energy Services Provider) Mitsubishi Corporation (Trading Company) Mitsubishi Heavy Industries Ltd. (Industrial Machinery Manufacturer)
Purpose	To collaboratively study technical application, economic evaluation and carbon reduction plan for ammonia co-firing up to 20 percent at the BLCP 1,434 MW coal-fired power plant
Budget	N/A
Future plan	Not mentioned; however, results from the study can be beneficial in the implementation process

80 Source: EGCO Website

ACWA Power, PTT, EGAT have signed an MoU to collaborate on establishing green hydrogen and derivative production facilities in Thailand


8	
Name of project	Green hydrogen and derivatives development project
Period	November 2022 - unknown
Place	Thailand
Partners	 ACWA Power (Electricity Generator) PTT Public Company Limited (Oil and Gas Company) Electricity Generating Authority of Thailand (EGAT)
Purpose	To conduct an <u>investment feasibility study</u> to plan on <u>establishing large-scale renewable-powered</u> <u>green hydrogen and derivatives production</u> <u>facilities in Thailand</u>
Budget	■ 7B USD
Future plan	Target production is 225,000 tons of hydrogen per year

81 Source: Thai PR

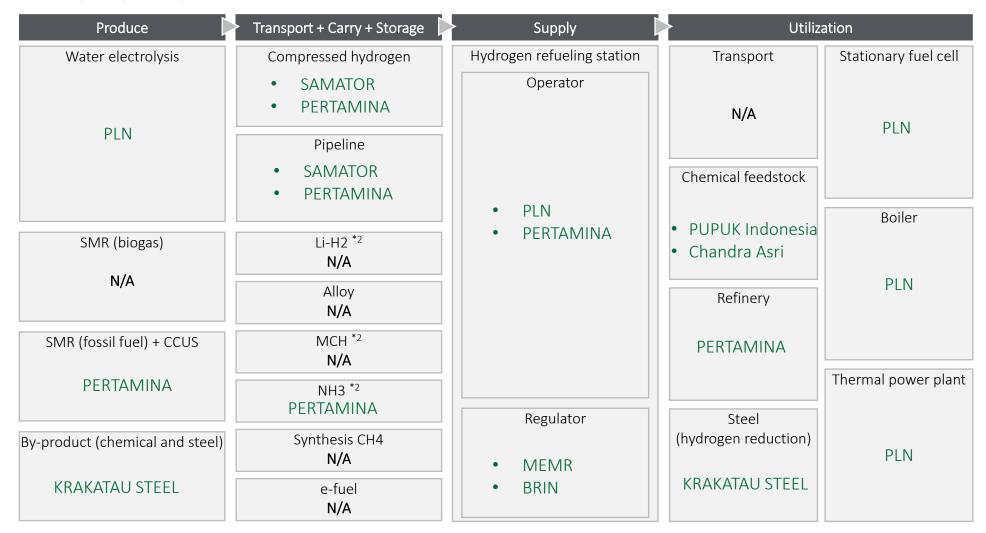
EGAT, ATE, EGCO, and Bloom Energy signed an MoU to develop hydrogen technologies

0			
Name of project	Investment Opportunity in Solid Oxide Fuel Cells and Electrolyzer Technology Exploration		
Period	December 2021		
Place	N/A		
Partners	 Energy Generating Authority of Thailand (EGAT) ATE (<i>Energy Company</i>) Electric Generating Public Company Limited (EGCO) (<i>Power Producer</i>) Bloom Energy (<i>Electricity Generator and</i> <i>Hydrogen Producer</i>) 		
Purpose	To develop power plants in Thailand using new energy alternatives and SOEC and SOFC technology to pave the way to Thailand's decarbonization and energy transition to hydrogen		
Budget	N/A		
Future plan	This MOU aims to support the nation in achieving carbon neutrality		

EGAT Headquarter, Bangkok, Thailand

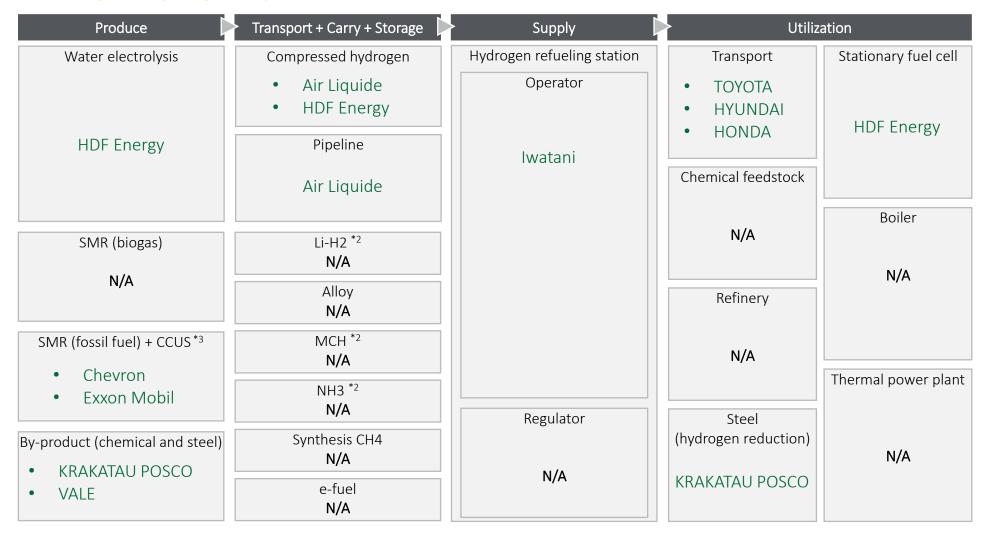
Japanese companies and EGAT signed an MoU to Collaborate on Building Clean Hydrogen/Ammonia Value Chain in Thailand

Clean Hydrogen and Ammonia Value Chain


Building a Clean Hydrogen and Ammonia Value Chain Derived from Renewable Energy Sources in Southern Thailand		
March 2023 onwards		
Southern Thailand		
 Electricity Generation Authority of Thailand (EGAT) Mitsubishi Company Ltd. Chiyoda Corporation Mitsui O.S.K. Lines, Ltd. 		
To collaborate on decarbonization projects by conducting a study on possible options to establish a series of clean hydrogen and ammonia's supply chain from renewable energy sources in Southern Thailand		
N/A		
 Supply clean hydrogen and ammonia domestically and internationally 		

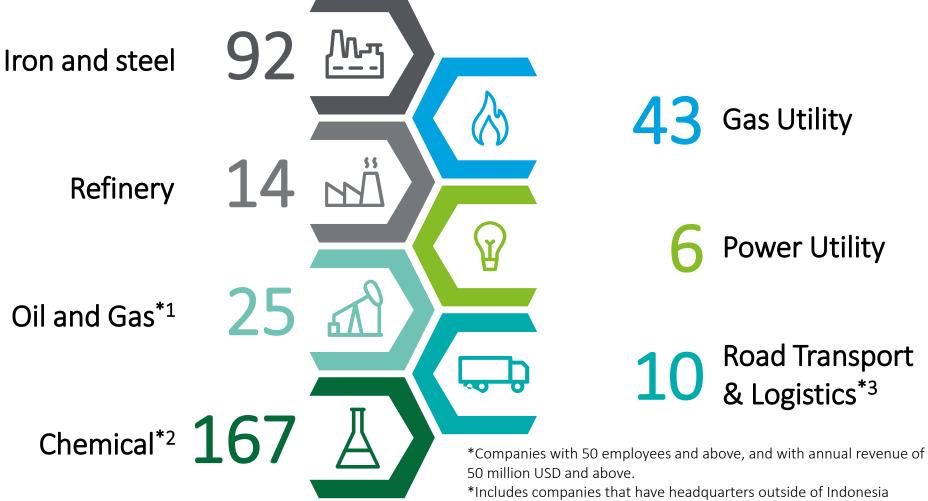
Indonesia

Companies in Indonesia cover all the parts of hydrogen supply chain except for advanced carry and storage technologies


Local hydrogen player map in Indonesia^{*1}

*1: Note that hydrogen players do not just include players that have core technologies but also those who are engaged with related projects. *2: Hydrogen 85 careers that are likely to be options for hydrogen shipping

Companies in Indonesia cover all the parts of hydrogen supply chain except for advanced carry and storage technologies


External/global hydrogen player map in Indonesia*1

*1: Note that hydrogen players do not just include players that have core technologies but also those who are engaged with related projects. *2: Hydrogen 86 careers that are likely to be options for hydrogen shipping

There are larger potential especially in iron and steel, and chemical in Indonesia

The potential number of companies in Indonesia

Source: D&B Hoovers *1: PTT is the one and only oil and gas company in Thailand *2: includes fertilizer companies and industrial gas companies *2: road transport except for rail and logistics companies (freight transport and courier) 87

Reference Chevron and ExxonMobill are top oil and gas companies in Indonesia

Oil and Gas Industry Leaders *1

	Company name	Headquarters of parent company	Production amount (BpD / Barrels per Day)
1	Chevron Pacific Indonesia		210,582
2	ExxonMobil Cepu Limited	- United States	207,936
3	Pertamina EP	Indonesia	73,618
4	Pertamina Hulu Mahakam	- Indonesia	44,346
5	CNOOC	China	31,141

Source: *1 What Are the Biggest Oil & Gas Companies in Indonesia? | Indonesia Investments (indonesia-investments.com)

Byproduct and SMR hydrogen are both in mobilization status, while water electrolysis is in demonstration phase

Hydrogen	Production in Indonesia	Status: Not yet R&D	Demonstration scaling mobilization
	Water electrolysis	SMR (biogas)	SMR (fossil fuel) + CCUS
Status	Demonstration	Not Yet	R&D
Status Detail	There are several trial projects that has been conducted to produce green hydrogen using electrolysis within geothermal power generation	Not known public information on SMR from biogas	 Hydrogen for industrial uses is mainly produced through steam methane reforming (SMR) CCUS application is still under study
Challenge	 Some challenges, which include: *1 1) Incentives & technology uncertainty 2) Limitations in regulatory support & technical standard 	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Incentives & technology uncertainty 3) Limitations in regulatory support & technical standard 	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Incentives & technology uncertainty 3) Limitations in regulatory support & technical standard
Potential	According to PLN, the potential from renewable energy to be utilized in electrolysis is quite large, with hydropower (95 GW) & geothermal (24 GW) *3	Not known public information about potential	 According to ID's Federal Statistic, hydrogen production was 117,040 tonnes in 2019^{*2} There has been feasibility study conducted by Mitusbishi Corporation, Pertamina & Pupuk Indonesia on CCUS
Player	 Utility sectors (PLN) Electrolyzer producer (HDF Energy) 	Not known public information about player	

Source: *1 The Future of Hydrogen by IEA 2022 (<u>The Future of Hydrogen (windows.net</u>)), *2 Green Hydrogen in Indonesia by IESR-EKONID 2022 (<u>EKONID Team Site - Green Hydrogen Market S</u> <u>FINAL.pdf - All Documents (sharepoint.com)</u>)), *3 JICA Indonesia Decarbonization Survey (2022), <u>Hydrogen Indonesia (hydrogen-indonesia.id)</u>

Byproduct and SMR hydrogen are both in mobilization status, while water electrolysis is in demonstration phase

Hydrogen	Production in Indonesia	Status:	Not yet	R&D	Demonstration	scaling	mobilization
	By product H2						
Status	Mobilization						
Status Detail	 No known exact statistic on hydrogen specifically produced as by product. However, the amount is estimated to be large due to massive amount of steel- making industry 						
Challenge	Some challenges, which include: ^{*1} 1) Lack of policies that promote hydrogen						
Potential	According to Indonesian Iron and Steel Industry Association (IISIA), steel production is recorded at 19.6 million tons in 2022 & expected to increase to 23.34 million tons in 2025 ^{*2}						
Player	1) Steel-making sector (Krakatau Posco, Vale Indonesia)						

Source: *1 Global Hydrogen Trade to Meet The 1.5 C Climate Goal by IRENA 2022 (Global hydrogen trade to meet the 1.5 °C climate goal: Trade outlook for 2050 and way forward (irena.org)*2 Various News Articles (Produksi Baja Nasional Turun 2,9 Persen Tahun Lalu (bisnis.com), Kemenperin: Industri Logam Tumbuh 7,90 Persen pada Kuartal I 2022 (tirto.id)

Injection of hydrogen into existing pipeline is in demonstration phase

Hydrogen	Carry and Storage in Indonesia (1/3	Status: Not yet R&D	Demonstration scaling mobilization
	Compressed hydrogen	Pipeline	Li-H2
Status	Mobilization	Demonstration	Not yet
Status Detail	Currently, hydrogen for industrial uses is transported by trucks in the form of compressed hydrogen	There has been several trial for hydrogen distribution utilizing existing natural gas pipelines by blending hydrogen to natural gas	No known public research on Li-H2
Challenge	Some challenges, which include: ^{*1} 1) Limitations in regulatory support & additional incentives	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Limitations in regulatory support & technical standard 	Some challenges, which include: ^{*2} 1) Lack of policies that promote hydrogen infrastructure development
Potential	The only method that is already in Mobilization status	By March 2020, there was 14,855 km of natural gas pipeline available, consisting of 5,254 transmission pipelines and 6,163 distribution pipelines, which available to be used for hydrogen transport ^{*3}	No known information about its potential
Player	 Oil & gas sectors (Pertamina, Samator Indo Gas, Air Products, Air Liquide, and Linde) 	1) Oil & gas sectors (Pertamina, Samator Indo Gas, Air Liquide)	No known player

Source: *1 The Future of Hydrogen by IEA 2022 (<u>The Future of Hydrogen (windows.net</u>)), *2 Global Hydrogen Trade to Meet The 1.5 C Climate Goal by IRENA 2022 (<u>Global hydrogen trade to meet the</u> 1.5 °C climate goal: Trade outlook for 2050 and way forward (irena.org), *3 JICA Indonesia Decarbonization Survey (2022)

NH3 as energy carrier is in R&D phase in Indonesia

Hydrogen	Carry and Storage in Indonesia (2/	3) Status: Not yet R&D	Demonstration scaling mobilization
	Alloy	MCH	NH3
Status	Not yet	Not yet	R&D
Status Detail	No known public research on Alloy transport	No known public research on MCH transport	There has been trial project conducted by government, private & university to use NH3 (ammonia) transport, some of which considering using Carbon Capture Storage (CCS) in Sulawesi & Kalimantan Island ^{*2}
Challenge	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Incentives & technology uncertainty 3) Limitations in regulatory support & technical standard 	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Incentives & technology uncertainty 3) Limitations in regulatory support & technical standard 	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Incentives & technology uncertainty 3) Limitations in regulatory support & technical standard
Potential	No known information about its potential	No known information about its potential	One of trial project conducted by Mitsubishi & Insitut Teknologi Bandung estimated potential NH3 plant to produce around 660 kilo tonnes/year using CCS in Central Sulawesi ^{*3}
Player	No known player	No known player	 Private sectors (Mitsubishi) SOEs (Pertamina & PLN) Public (Institut Teknologi Bandung, Ministry of Energy (MEMR)

Source: *1 The Future of Hydrogen by IEA 2022 (The Future of Hydrogen (windows.net), *2 Various News Articles (Pertamina, PT Pupuk Indonesia, and Mitsubishi Corporation Agree to Develop Blue/Green Hydrogen and Ammonia Business | Pertamina), *3 JICA Indonesia Decarbonization Survey (2022)

Advanced technologies such as synthetic fuel is not yet available

Hydrogen	Carry and Storage in Indonesia (3/	3) Status: Not yet R&D Demonstration scaling mobilization
	Synthesis CH4	e-fuel
Status	Not yet	Not yet
Status Detail	No known public research on synthesis CH4	 No exist infrastructure and/or facilities for e-fuel production & infrastructure There has been interest both public & private to invest in e-fuel for Electric Vehicle (EV) *2
Challenge	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Incentives & technology uncertainty 3) Limitations in regulatory support & technical standard 	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Incentives & technology uncertainty 3) Limitations in regulatory support & technical standard
Potential	No known information about its potential	 No known information about its potential However, the government & private sector has shown interest in pursing e-fuel to accelerate net zero adoption^{*2}
Player	No known player	 Indonesia's government (specifically Ministry of Energy (MEMR)) Some private sector in automotive such as Toyota, Honda, Hyundai

Source: *1 The Future of Hydrogen by IEA 2022 (<u>The Future of Hydrogen (windows.net</u>), *2 Various News Articles (<u>Toyota Mungkin Hadirkan Mirai FCEV di Indonesia - Carmudi Indonesia</u>, <u>content-</u> rencana-umum-energi-nasional-ruen.pdf (esdm.go.id)

Hydrogen refueling station is not yet available while there is government's interest

Hydrogen	Supply in Indonesia	Status:	Not yet	R&D	Demonstration	scaling	mobilization
	HRS (Hydrogen Refueling Station)						
Status	R&D						
Status Detail	The government has shown interest to develop refueling station infrastructure for hydrogen in Presidential Regulation No. 22/2017 on National Energy Plan (RUEN)						
Challenge	 Some challenges, which include: *1 1) High cost in R&D 2) Limited technical knowledge & experts 3) Limited supporting policy 						
Potential	There's a research discussion between the National Research and Innovation Agency (BRIN), Agency for the Assessment and Application of Technology (BPPT) with Japanese Fueling Station Developer, IWATANI on hydrogen refueling station ^{*2}						
Player	 Indonesia's government (National Research & Innovation Agency (BRIN), Agency for the Assessment & Application of Technology (BPPT) HRS developer (IWATANI) Energy-related SOEs (Pertamina & PLN) 						

Source: *1 Global Hydrogen Trade to Meet The 1.5 C Climate Goal by IRENA 2022 (Global hydrogen trade to meet the 1.5 °C climate goal: Trade outlook for 2050 and way forward (irena.org)*2 Interview result conducted by NEDO-Deloitte with Pertamina 2023

Oil refinery and chemical industry, such as fertilizer, has been the main user of hydrogen

Hydrogen Utilization in Indonesia (1/3)

nyurogen		Status: Not yet R&D	Demonstration scaling mobilization
	Transportation	Chemical (feedstock)	Refinery
Status	Not yet	Mobilization	Mobilization
Status Detail	 There has been interest both public & private to invest & developed FCV as the new e-vehicle Exist general policy for FCV by government 	Hydrogen has been widely used for chemical industry, specifically for fertilizer production	Hydrogen used as a "catalyst" (to stimulate chemical reactions) and as a process byproduct that (in certain concentrations) can be an indicator that some critical action must be taken.
Challenge	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Incentives & technology uncertainty 3) Limitations in regulatory support & technical standard 	Some challenges, which include: ^{*2} 1) Lack of policies that promote hydrogen development	Some challenges, which include: *2 1) Lack of policies that promote hydrogen development
Potential	The government has targeted 2.1 million e- motorcycles and 400,000 e-cars by 2025, which might include FCV adoption *3	The largest fertilizer producer & Indonesia's SOEs, Pupuk Indonesia (Persero), recorded a total production of 11,764,234 tons of fertilizer throughout 2022.* ³	The Special Task Force for Upstream Oil and Gas Business Activities (SKK Migas) reported that Indonesia's actual oil production is 612.3 thousand barrels of oil per day (mbopd) in 2022 ^{*3}
Player	 Indonesia's government (specifically Ministry of Energy (MEMR)) Some private sector in automotive such as Toyota, Honda, Hyundai for FCV 	Pupuk Iskandar Muda	1) Oil & gas refinery (Pertamina)

Source: *1 The Future of Hydrogen by IEA 2022 (The Future of Hydrogen (windows.net), *2 Global Hydrogen Trade by IRENA 2022 (Global hydrogen trade to meet the 1.5 °C climate goal: Trade outlook for 2050 and way forward (irena.org) *3 Various News Articles (burn.go.id, Pertamina & Pupuk Indonesia Sepakat Bakal Garap Hidrogen (cnbcindonesia.com), Hydrogen In Oil Refineries:)

Other usage of hydrogen has not yet been implemented

Hydrogen Utilization in Indonesia (2/3)

Hydrogen Othization in Indonesia (2/5)		Status: Not yet R&D	Demonstration scaling mobilization
	Steel	Fuel cell (CHP)	Boiler
Status	Not yet	Not yet	Not yet
Status Detail	All the steel maker in Indonesia still uses conventional blast furnace firing, using coal/coke as key ingredients for combustion process & chemical additives	Currently, fuel cell (CHP) development in Indonesia is still in very early stage of research & development	Hydrogen boiler has not been used for household and/or industrial uses in Indonesia
Challenge	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Incentives & technology uncertainty 3) Limitations in regulatory support & technical standard 	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Incentives & technology uncertainty 3) Limitations in regulatory support & technical standard 	 Some challenges, which include: *1 1) Limited infrastructure readiness 2) Incentives & technology uncertainty 3) Limitations in regulatory support & technical standard
Potential	Industry Association (IISIA), steel production is recorded at 19.6 million tons in 2022 &	Some early research indicates that fuel cell utilization is for hydrogen electrolysis from renewable source (such as water) to produce electricity & fuel cell electric vehicle (FCV/FCEV) ^{*2}	No known public data on the result of the
Player	 Steel manufacturer (Krakatau Posco/Steel, Bekaert Wire Indonesia, Gunung Raja Paksi, Master Steel Manufactory, Jakarta Cakratunggal Steel Mills 	Resources (MEMR), Indonesia Fuel Cell and Hydrogen Energy Association (INAFHE)	and Hydrogen Energy Association (INAFHE)

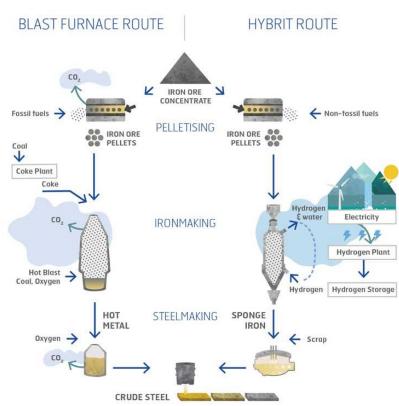
C1

Source: *1 The Future of Hydrogen by IEA 2022 (The Future of Hydrogen (windows.net), *2 Various News Articles (Anggota | IISIA, Produksi Baja Nasional Turun 2,9 Persen Tahun Lalu (bisnis.com), Kemenperin: Industri Logam Tumbuh 7,90 Persen pada Kuartal I 2022 (tirto.id)

Hydrogen, especially green hydrogen for power generation has been within R&D stage to support Indonesia's decarbonization

Hydrogen	Utilization in Indonesia (3/3)	Status:	Not yet	R&D	Demonstration	scaling	mobilization
	Thermal Power Plant						
Status	R&D						
Status Detail	There has been initial research conducted by government, SOEs & university (Institut Teknologi Bandung) to estimates the potential capacity produced by hydrogen for electricity						
Challenge	 Some challenges, which include: *1 1) High cost in R&D 2) Limited technical knowledge & experts 3) Limited supporting policy 						
Potential	No known public data on the result of the trial research						
Player	 Regulatory (Ministry of Energy & Resources (MEMR), Indonesia Fuel Cell and Hydrogen Energy Association (INAFHE) SOEs (PLN) State university (Institut Teknologi Bandung) 						

Source: *1 Global Hydrogen Trade to Meet The 1.5 C Climate Goal by IRENA 2022 (Global hydrogen trade to meet the 1.5 °C climate goal: Trade outlook for 2050 and way forward (irena.org)


Reference

Steel production uses hydrogen mainly as chemical additives for chemical reactions during steel-making process

Hydrogen usage in steel industry

Hydrogen Usage	 Hydrogen can be used as the sole chemical additives in a process known as direct reduction of iron impurities or DRI
Blast Furnace Process	 The Blast Furnace Combustion Firing route, also known as the primary production route, accounts for majority steel production in Indonesia. Most of the emissions come from the blast furnace and the coke plant. The coke plant produces "coke coal", which is used in the blast furnace both as a heat source and to reduce iron impurities
Latest Steel Production Innovation	There has been new method by using hydrogen in the process of blast furnace firing (H2-BF) has the potential to reduce emissions both in the coke plant and blast furnace because it reduces the amount of coal needed and only forms water after reacting with iron ore instead of carbon dioxide
Current Situation	 All the steel maker in Indonesia still uses conventional blast furnace combustion firing, using coal/coke as key ingredients for combustion process & chemical additives However, due to technical reasons (related to heat fluctuations), it is not feasible to only use hydrogen in a blast furnace
Steel Producer	 Krakatau Posco/Steel, Bekaert Wire Indonesia, Gunung Raja Paksi, Master Steel Manufactory, Jakarta Cakratunggal Steel Mills

98 Source: Iron and Steel Institute of Japan, Several International Journal Articles

Reference Stationary Fuel Cell (CHP) is still within the early stage of R&D

CHP Development

Latest Condition	 Currently, fuel cell (CHP) development in Indonesia is still in very early stage of research & development Some early research indicates that fuel cell utilization is for hydrogen electrolysis from renewable source (such as water) to produce electricity & fuel cell electric vehicle (FCV/FCEV)
Gov. Plans	 According to Ministry of Energy & Mineral Resources (MEMR), In the short term, the production of distributed hydrogen through reforming natural gas or by electrolysis will be the most likely approach to introduce hydrogen technology and the start of building a hydrogen infrastructure. Meanwhile, in the long term, centralized large-scale hydrogen production facilities based on hydrogen production through coal gasification and through biomass gasification will provide economic benefits and will be needed to meet hydrogen needs and, in the future, will have a positive effect on the national economy
Additional Info	 Seeing the huge potential and opportunities for fuel cells in the future in Indonesia, the Agency for the Assessment and Application of Technology (BPPT) initiated the establishment of the Indonesia Fuel Cell and Hydrogen Energy Association (INAFHE) as a forum for all elements engaged in the development of fuel cells in Indonesia.

99 Source: Ministry of Energy & Mineral Resources (MEMR), Indonesia Fuel Cell and Hydrogen Energy Association (INAFHE), Several News Articles

Hydrogen projects is initially start in Sumatera & Java Island, however, it will expand throughout Indonesia

Hydrogen Project Map in Indonesia

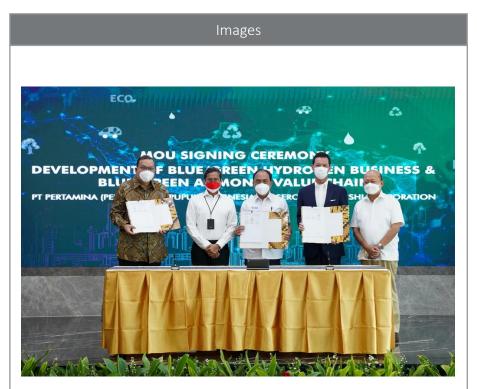
				Supply chain			Status				
	#	Name of project	Pro duct ion	Carr y/tr ans port	Use	Agr eem ent	R&D	FS	De mo	Co mm erci al	
	1	Green hydrogen production in Ulubelu Geothermal Power Plant	•	•	•						
18	2	Feasibility Study on Business Green Hydrogen, Ammonia and CCUS	•	•	•						
	3	De-dieselization to renewables- based fuel power generation	•	•	•						
4	4	Co-Firing Study for Hydrogen, Biomass and Ammonia in Power Plants	•								
Projects without dedicated areas:	5	Joint study agreement (JSA) on The Development of Green Hydrogen & Ammonia	•								
2 3 5	6	Study on Integrated Wind Energy and Green Hydrogen Facility	•								
6 7 9	7	MoU for Development of Green Hydrogen & Ammonia Production Study	•								
	8	Memorandum of understanding (MoU) for feasibility study on green hydrogen pipelines		•							
	9	Hydrogen Refueling Station Research Study		•							

Pertamina & its subsidiary is conducting a green hydrogen production demonstration using geothermal electricity in Ulubelu city

Green Hydrogen Production Trial Project

1	
Name of project	Green hydrogen production in Ulubelu Geothermal Power Plant
Period	Trials starts in early Jan until Dec 2023
Place	Ulubelu City, Lampung Province (Southern Sumatera)
Partners	 Pertamina (Investor & Developer) Pertamina Geothermal Energy (PGE) (Investor & Developer)
Purpose	 Pertamina plans to produce up to 100 kg/day of green hydrogen to supply its polypropylene factory in Plaju and supply the needs of the local petrochemical industry The initial trial start will be in 2023, which plans to be scaled up if the trial successful
Budget	 According to PGE, <u>initial investments is</u> <u>around US\$ 5 million</u> However, the estimated investment costs <u>only cover the upstream side</u> & not included transportation & storage
Future plan	If the trials is successful, <u>Pertamina plans to</u> <u>scale it up</u> and being fully implemented as Indonesia's first green hydrogen production <u>by 2024/2025</u>

Ulubelu Geothermal Power Plant


Ulubelu City, Lampung Provinces

101 Source: Pertamina Geothermal Energy (PGE), Several News Article

Indonesia Starts Working on Green Hydrogen, Ammonia and CCUS

Green Hydrogen & Ammonia Value Chain with CCUS Study

Name of project	Feasibility Study on Business Blue/Green Hydrogen, Ammonia and CCUS
Period	4th Mar 2022 (MoU sign) – no known end date
Place	Throughout Indonesia (no exact place/facilities)
Partners	 Pertamina (Investor & Developer) PT Pupuk Indonesia (Ammonia Producer) Mitsubishi Corporation (Investor)
Purpose	 Pertamina cooperates to <u>develop blue/green</u> <u>hydrogen, blue/green ammonia, and Carbon</u> <u>Capture Utilization and Storage (CCUS),</u> with the facilitation of Pupuk Indonesia's production and co-combustion of ammonia at the Coal Steam Power Plant The <u>green hydrogen produced from the RE</u> <u>plant will be used to produce green</u> <u>ammonia</u>. Meanwhile, <u>blue hydrogen will be</u> <u>used to produce green ammonia</u>, which can be used for ammonia co-combustion in coal fired power plant.
Budget	No known information found yet
Future plan	 Pertamina will develop necessary <u>infrastructure & value chain for green</u> <u>hydrogen</u> production and power generation

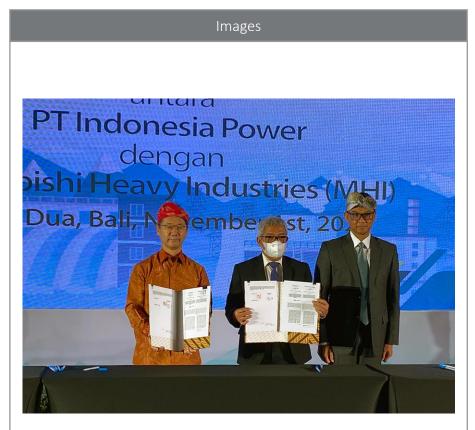
Offical MoU Signing at 4th March 2022 between Pertamina, Pupuk Indonesia & Mitsubishi Corporation on Study Program

102 Source: Pertamina (Persero), Several News Article

HDF Energy & PLN to develop first renewable-hydrogen hybrid power plant

Joint Collaboration on De-dieselization Program

2	
Name of project	De-dieselization to renewables-based fuel power generation
Period	Mar 2022 (MoU sign) – no known end date
Place	 Diesel power plant facility throughout Indonesia (specifically remote areas)
Partners	 Perusahaan Listrik Negara (PLN) (Power Generator & Infrastructure Developer) HDF Energy (Power Generator Developer, specifically for renewables)
Purpose	 PLN has launched a "de-dieselization" program by <u>converting around 5,200 diesel</u> <u>power plants</u>, which are currently still operating in remote areas all over the country, <u>to new renewable energy-based</u> <u>plants (EBT)</u> <u>HDF Energy</u>, is engaged with PLN & Ministry of Energy, to developed renewables power plant project, including <u>hydrogen, solar and</u> <u>wind under the independent power producer (IPP) scheme</u>
Budget	No known information found yet
Future plan	No known information found yet

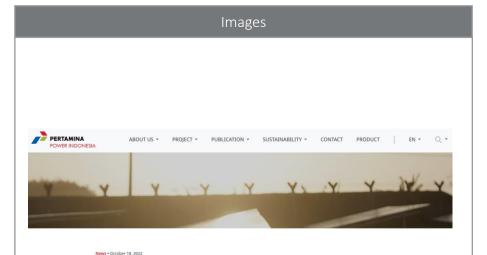

PLN G20 Seminar Discussion on accelerating De-dieselization Program to increase renewable energy mix

103 Source: Perusahaan Listrik Negara (PLN), HDF Energy Website, Several News Article

Mitsubishi Heavy Industries (MHI) and Indonesia Power to examine co-firing up to 100% with hydrogen & ammonia

Joint Feasibility Research Program

4	
Name of project	Co-Firing Study for Hydrogen, Biomass and Ammonia in Power Plants Across Indonesia
Period	2 nd Nov 2022 (MoU sign) – no known end date
Place	Suralaya & Tanjung Priok city, West Java
Partners	 MHI, with assistance from Mitsubishi Power (Investor & Developer) Perusahaan Listrik Negara (PLN) (Power Generator & Infrastructure Developer)
Purpose	 The first study will examine the technical and economic <u>feasibility of co-firing up to</u> <u>100% biomass at the Suralaya coal-fired</u> <u>power plant (CFPP).</u> The second study, which will also use Suralaya CFPP as the reference plant, will investigate <u>co-firing of ammonia</u> produced by existing ammonia plants in Indonesia. The third study will evaluate <u>technical and</u> <u>economic feasibility of hydrogen co-firing in</u> <u>an M701F gas turbine</u> at the Tanjung Priok gas turbine combined cycle (GTCC) facility.
Budget	No known information found yet
Future plan	The result of study will be used as <u>key</u> <u>references for future co-firing program</u> in Indonesia, especially hydrogen & ammonia
104 Source: Perusahaan Listrik Negara (PLN), Several News Article	



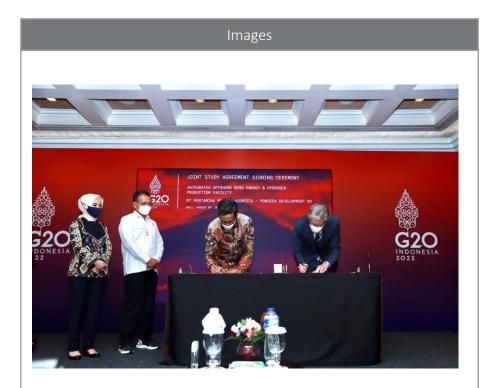
[Pictured from left to right] Osamu Ono (Chief Regional Officer, Asia Pacific & India/MHI), Rachmad Handoko (Director/Indonesia Power) and Darmawan Prasodjo (President Director/PLN) at signing ceremony

Joint study agreement (JSA) on The Development of Green Hydrogen & Ammonia

Pertamina – TEPCO HD Study on Green Hydrogen & Ammonia

Name of project	Pertamina NRE - TEPCO HD Joint Study on The Development of Green Hydrogen and Green Ammonia
Period	19 th Oct 2022 (MoU sign) – no known end date
Place	Throughout Indonesia (no exact places)
Partners	 Pertamina New & Renewable Energy (Pertamina NRE) with assistance from Pertamina Power Indonesia (PPI) (<i>Investor</i>) Tokyo Electric Power Company Holdings (TEPCO HD) (<i>Investor</i>)
Purpose	Pertamina NRE and TEPCO HD will combine Pertamina's geothermal power generation technology and TEPCO HD's hydrogen production technology to establish optimal operational technology and achieve <u>cost- competitive green hydrogen & green ammonia production and transportation through the Joint Study</u>
Budget	No known information found yet
Future plan	No known information found yet

Pertamina NRE - TEPCO HD Joint Study on The Development of Green Hydrogen and Green Ammonia

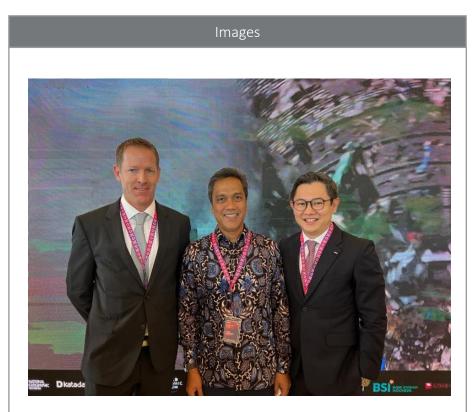

Pertamina Power Indonesia (Pertamina NRE) and Tokyo Electric Power Company Holdings, Incorporated (TEPCO HD) signed a joint study agreement (JSA) at the G20 State-owned Enterprises International Conference in Nusa Dua, Bali.

105 Source: Pertamina New & Renewable Energy (Pertamina NRE) Website, TEPCO HD Company Articles

Joint study agreement (JSA) on the Integrated Offshore Wind Energy & Green Hydrogen Production Facility

Study on Green Hydrogen & Wind Power Development

Name of project	Pertamina NRE - Pondera Study on Integrated Wind Energy and Green Hydrogen Facility
Period	2 nd Sep 2022 (MoU sign) – no known end date
Place	Throughout Indonesia (no exact places)
Partners	 Pertamina New & Renewable Energy (Pertamina NRE) (<i>Investor</i>) Pondera Development BV (Pondera) (<i>Investor & Developer</i>)
Purpose	 The collaboration between Pertamina NRE and Pondera is to unleash <u>wind energy</u> <u>potential</u> that is not yet utilized enough The study also aims to research about the <u>green hydrogen production facility</u> <u>development in the wind power plant facility</u> <u>development in the wind power plant facility</u> <u>Pondera</u> has experience in developing on-and offshore wind projects in Europe and Asia. The Dutch-based company's experience includes conducting wind measurements, feasibility studies, wind modeling, wind farm engineering
Budget	No known information found yet
Future plan	No known information found yet

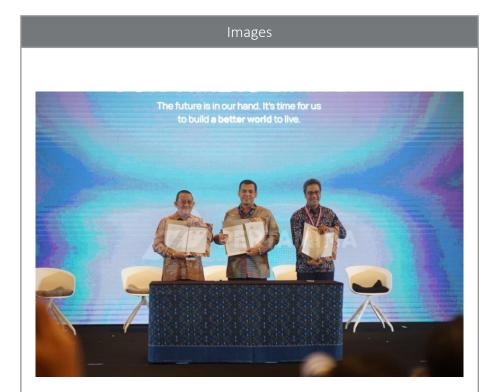

Pertamina Power Indonesia (Pertamina NRE) and Pondera Development BV (Pondera) signed a joint study agreement (JSA) at the B20 International Summit on Tuesday (30/8) in Nusa Dua, Bali.

106 Source: Pertamina New & Renewable Energy (Pertamina NRE) Website, Pondera Development BV (Pondera) Company Website

Joint Study Agreement (JSA) for the Development of Green Hydrogen & Ammonia Projects

Green Hydrogen & Ammonia Development Projects

Name of project	Memorandum of understanding (MoU) for Development of Green Hydrogen & Ammonia Production Study
Period	11 th Nov 2022 (MoU sign) – no known end date
Place	Throughout Indonesia (no exact places)
Partners	 Pertamina Power Indonesia (Pertamina NRE) (<i>Investor</i>) Keppel New Energy Pte. Ltd. (<i>Investor</i>) Chevron New Energies International Pte. Ltd. (<i>Investor</i>)
Purpose	 The JSA intends to explore the feasibility of developing a green hydrogen facility, with a production capacity of at least 40,000 tonnes per annum, powered by 250-400 megawatts of geothermal energy in the initial phase. The hydrogen production facility could have the potential to scale up to 80,000-160,000 tonnes per annum, depending on the availability of geothermal energy as well as market demands.
Budget	No known information found yet
Future plan	No known information found yet

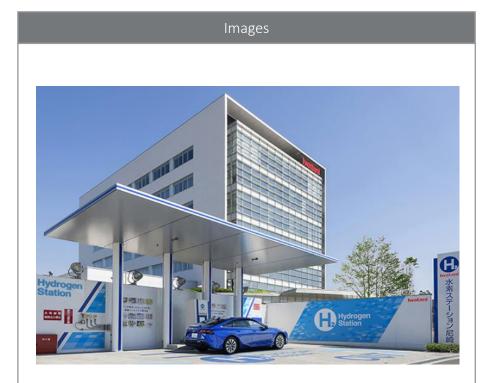

From left: Director of Chevron New Energies International, Pte. Ltd., Andrew S. Mingst; CEO of Pertamina NRE, Dannif Danusaputro; Director of Keppel New Energy Pte., Ltd., Chua Yong Hwee.

107 Source: Various News Articles (Chevron to explore development of green hydrogen — Chevron)

Pertamina NRE, Krakatau Steel, and RAJA Collaborate to Develop Green Hydrogen Pipelines

Joint Study Agreement on Green Hydrogen Pipeline

Name of project	Memorandum of understanding (MoU) for feasibility study on green hydrogen pipelines
Period	11 th Nov 2022 (MoU sign) – no known end date
Place	 Ulubelu City, Lampung Province Throughout Indonesia (no exact facilities)
Partners	 Pertamina New & Renewable Energy (Pertamina NRE) with assistance from Pertamina Geothermal Energy (PGE) (<i>Investor & Developer</i>) Krakatau Steel (KS) (<i>Investor & Hydrogen End</i> User) PT Rukun Raharja (RAJA) (<i>Investor &</i> Developer for Gas Production)
Purpose	 Develop pipeline for green hydrogen distribution from production to user For the first stage of study mainly will focuses on distribution pipeline from Ulubelu Geothermal Power Plant (in which the first green hydrogen production is expected to be operated from)
Budget	No known information found yet
Future plan	Will <u>continue to develop pipeline for other</u> <u>green hydrogen production facilities</u> & connects them to user


Pertamina NRE, Krakatau Steel, and PT Rukun Raharja signed a memorandum of understanding for the development of a green hydrogen pipeline, in the series of B20 Summit activities in Nusa Dua Bali

108 Source: Pertamina New & Renewable Energy (Pertamina NRE, Pertamina Geothermal Energy (PGE), Several News Article

Hydrogen Refueling Station (HRS) Initial Study

Hydrogen Refueling Station (HRS) R&D

Name of project	Hydrogen Refueling Station Research Study	
Period	No known information found yet	
Place	Throughout Indonesia (no exact places)	
Partners	 Iwatani Industrial Gas Indonesia (<i>Developer</i>) National Research and Innovation Agency (BRIN) (<i>Regulator</i>) Agency for the Assessment and Application of Technology (BPPT) (<i>Regulator</i>) 	
Purpose	 During an interview with Pertamina, there has been research discussion between the National Research and Innovation Agency (BRIN), Agency for the Assessment and Application of Technology (BPPT) with Japanese Fueling Station Developer, <u>IWATANI on hydrogen refueling station</u> IWATANI has previously experienced in hydrogen station development in Japan. The company took the initiative in building hydrogen infrastructure together with the development of <u>Japan's first "Mobile Hydrogen Station"</u> 	
Budget	No known information found yet	
Future plan	No known information found yet	

IWATANI's hydrogen refueling station in Yokohama, Japan

109 Source: Iwatani Industrial Gas Indonesia , NEDO-Deloitte Interview Session

Appendix – Presentation deck for Hydrogen Thailand

Over 300 Participants, from Both Thai and Japanese Companies Attended Hydrogen Thailand Event

Hydrogen Thailand Event

Name of Event	Hydrogen Thailand Event	
Period	23 February 2023	
Venue	Holiday Inn Pattaya	
Participants	300 – 400 People	
Presenters	 JERA Power Co., Ltd. New Energy and Industrial Technology Development Organization (NEDO) Deloitte Touche Tohmatsu Ltd. Energy Generating Authority of Thailand (EGAT) Japan Hydrogen Association (JH2A) Chiyoda Corporation Mitsui & Co., Ltd. Arthur D. Little 	
Purpose	For companies and individuals to share and discuss their knowledge, process, and initiatives for hydrogen production, storage and usage in Thailand	

Monitor **Deloitte.**

Hydrogen Thailand

Hydrogen market overview in Thailand

デロイト トーマツ コンサルティング合同会社 23 February 2023

MAKING AN IMPACT THAT MATTERS Since (845)

Table of Contents

Japan-Asia Energy Partnership and NEDO's Project	
Energy Trend in Thailand	11
Hydrogen Policy in Thailand	
Hydrogen Market and Projects in Thailand	22

Japan-Asia Energy Partnership and NEDO's Project

The Japanese Government has been collaborating with other Asian countries as in AETI, AGGPM and AZEC in energy sector, and individually with Thailand

Japan's energy-related collaboration with Asian countries including Thailand

*1: Japan's PM Kishida declared his ambition to build the community at World Economic Forum

METI supports energy transition of Asian countries in AETI, "Asia Energy Transition Initiative"

Asia Energy Transition Initiative (AETI) by METI

Asia Energy Transition Initiative (AETI)

- "Asia Energy Transition Initiative (AETI)" includes a variety of support for the realisation of various and pragmatic energy transitions in Asia.
- 1. Support for formulating energy transition roadmaps
- 2. Presentation and promotion of the concept of Asia Transition Finance
- 3. US\$10 billion financial support for various projects
 - ➤ (e.g.) Renewable Energy, Energy Efficiency, LNG, CCUS etc.
- 4. Technology development and deployment, utilizing the achievement of <u>"Green Innovation Fund"</u>
 - ➤ (e.g.) Offshore wind, Fuel-ammonia, Hydrogen etc.
- 5. Human resource development, knowledge sharing and rule-making on

decarbonization technologies

- > Capacity building of decarbonization technologies for 1,000 people in Asian countries
- Hold workshops and seminars related to energy transition
- Asia CCUS network

Source: METI (2022) Asia Energy Transition Initiative (AETI)

11 MoUs were signed for carbon neutrality at AGGPM 2022

The 2nd AGGPM Ministerial Meeting

Date	September 28, 2022		
Place	Tokyo / virtual		
Attendees	20 countries and 3 international organizations (Asian countries, Middle-eastern countries, North American countries, ASEAN ^{*1} , ERIA ^{*2} , IEA ^{*3})		
Key points	 Government Minister of Economy, Trade and Industry's declaration to achieve carbon neutrality while resolving challenges related to energy security, economic growth and climate change AETI-related projects reported Private sector Presentations of "Asia Transition Finance Guideline" final report, ten energy-transition technologies and projects related to Asia Transition Finance (ATF) Presentations of nine projects led by Japanese companies <u>11 MoUs were signed</u> 		

Source: METI Website

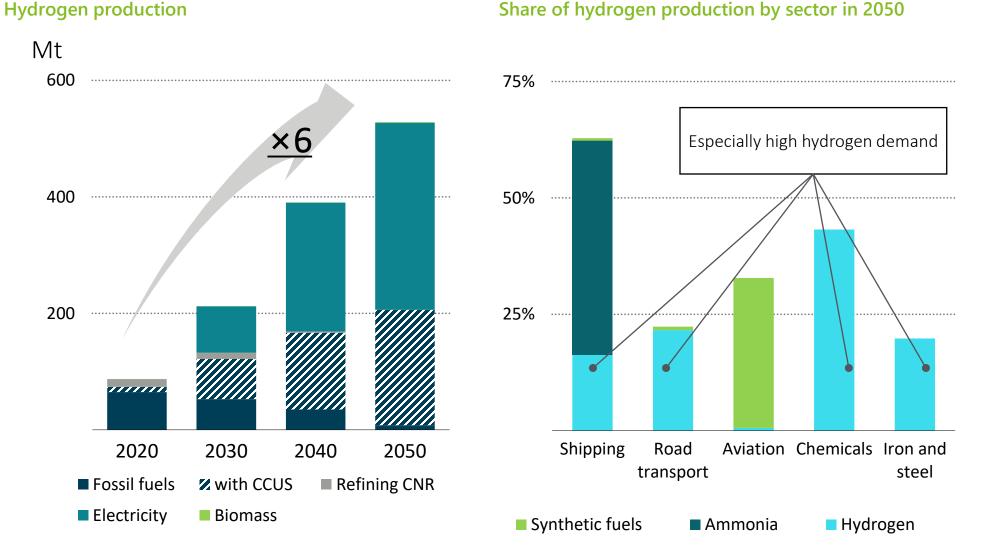
To realize the ideas of AETI, GoJ aims to build AZEC through measures such as providing zero emission technologies and financing

Asia Zero Emission Community (AZEC)

Asia Energy Transition Initiative (AETI)

Asia Zero Emission Community (AZEC)		
Support for zero emission technologies	 Provide support to build energy transition roadmaps Zero emission demonstration and roll-out projects, such as hydrogen, ammonia or CCUS 	
International investment & funding	 Build a transition finance rule Build hydrogen and ammonia international corridors Finance LNG, hydrogen, ammonia projects 	
Standardization of technologies	 Development of international standards for "green growth" Environment-and-climate-related rule makings Establishment of digital platforms to share CO2 emission data 	
Carbon transaction market	 Scale-up JCM by incorporating CCUS Initiate a carbon transaction market by taking advantage of private funding 	

Source: METI (2022) 「カーボンニュートラル実現に向けた国際戦略」


Thailand and Japan agreed on collaboration in the energy sector in January 2022

Energy partnership MoU between Thailand and Japan

Name of MoU	The Realization of Energy Partnership	Images
Date	13 January 2022	
Place	Bangkok, Thailand	
Partners	Ministry of Economy, Trade, and Industry of Japan (METI) and Ministry of Energy of the Kingdom of Thailand	
Areas of partnership	 Industries cooperated include oil and gas, electricity, renewable energy, energy efficiency, nuclear energy, innovation, technology, smart technology, <u>decarbonization</u> <u>technologies</u>^{*1} (e.g., hydrogen and CCUS), and other areas of energy cooperation to be determined by the participants Cooperation activities include bilateral consultation, exchange of energy information and statistical data, skill development activities, promotion of joint energy investment, operating and disseminating joint projects, <u>formulation of CN roadmap^{*2}</u>, and any other forms determined by the participants 	
Progress	The policy dialogue was held in January 2023 where representatives from both country share about energy policy implementation, specifically focusing on achieving carbon neutrality in 2050, and discuss about technologies necessary to achieve the goal e.g., CCUS, hydrogen and ammonia	
Future plan	Industries cooperated and cooperation activities to be later added	

*1: Prioritized industry *2: Prioritized activities, Source: METI Website

Hydrogen production jumps sixfold by 2050, driven by water electrolysis and natural gas with CCUS, to meet rising demand in shipping, road transport and heavy industry

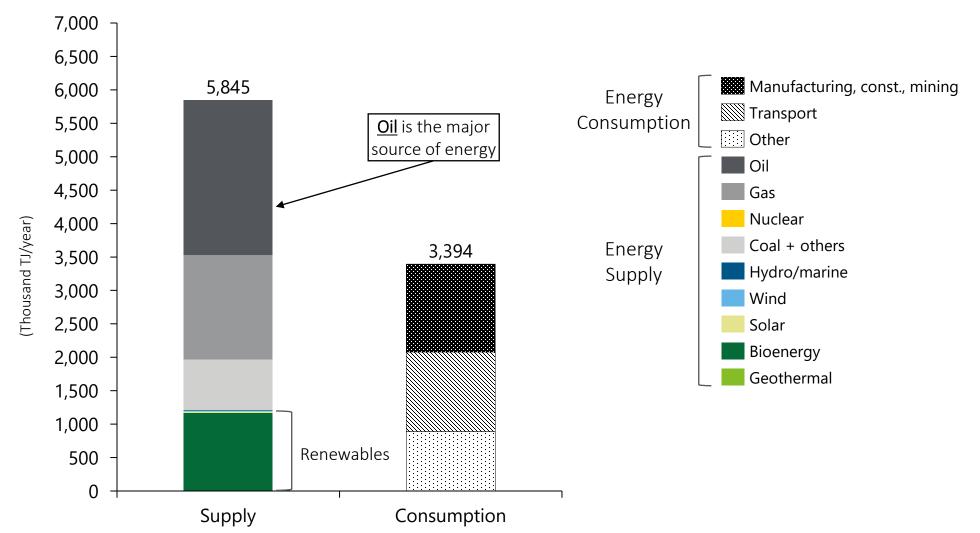
0 Source: Net Zero by 2050 A Roadmap for the Global Energy Sector (IEA, 2021)

120

NEDO studies hydrogen initiatives of public and private sectors and possible high-level scenarios and business models in Thailand

Project Background

- Carbon neutrality by 2050 has become a mainstream policy target in climate change among nations following the Kyoto Protocol and Glasgow Declaration. In this context, hydrogen and ammonia are expected as alternative carbon-neutral fuels to phase-out from fossil fuels.
- ASEAN countries have also declared carbon neutrality goals. Then it is assumed that introducing renewable energy and establishing a supply chain of hydrogen and ammonia will be accelerated.
- Furthermore, in January 2022, GoJ*1 signed MoU with Thailand government on an energy partnership, in which hydrogen is mentioned as a key item. Through the partnership, Japan's contribution to hydrogen development is increasing.
- Japan, however, have not yet fully grasped hydrogen policy and market in Southeast Asia, including Thailand.

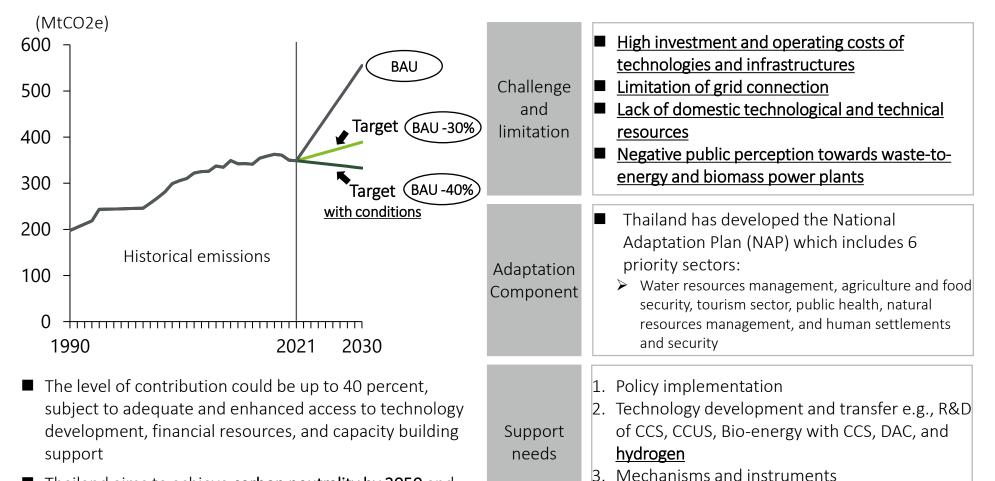

Project Goal

- This project aims to research the following through desktop research and interviews:
 - State of the art of hydrogen policy and market in Thailand
 - Future outlook of hydrogen in Thailand
 - Hydrogen technical readiness toward 2050s-60s
- Based on the information above, the project will create high-level hydrogen business models in the 2030s-40s

^{*1:} The Government of Japan

Energy Trend in Thailand

Oil and gas are the major source of energy in Thailand. Most of the renewables currently originate from bioenergy



Energy supply and consumption of Thailand in 2019

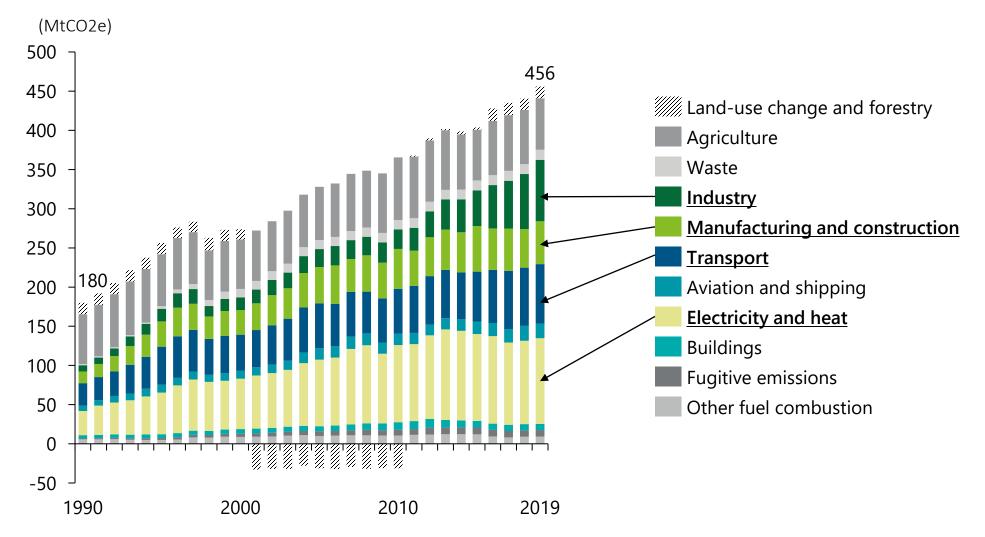
123 Source: Energy Profile (IEA), The 2020 Energy Balances (United Nations, 2020)

Thailand aims to reduce 30 percent of GHG emissions from the BAU level by 2030

Thailand's emission reduction target and countermeasures

Thailand aims to achieve <u>carbon neutrality by 2050</u> and <u>net-zero GHG emission by 2065^{*1}</u>

Source: Thailand's 2nd Updated Nationally Determined Contribution, Climate Action Tracker


*1: Carbon neutral means the amount carbon emission equals to the amount absorbed. Net-zero means carbon emission is zero when the amount of emission

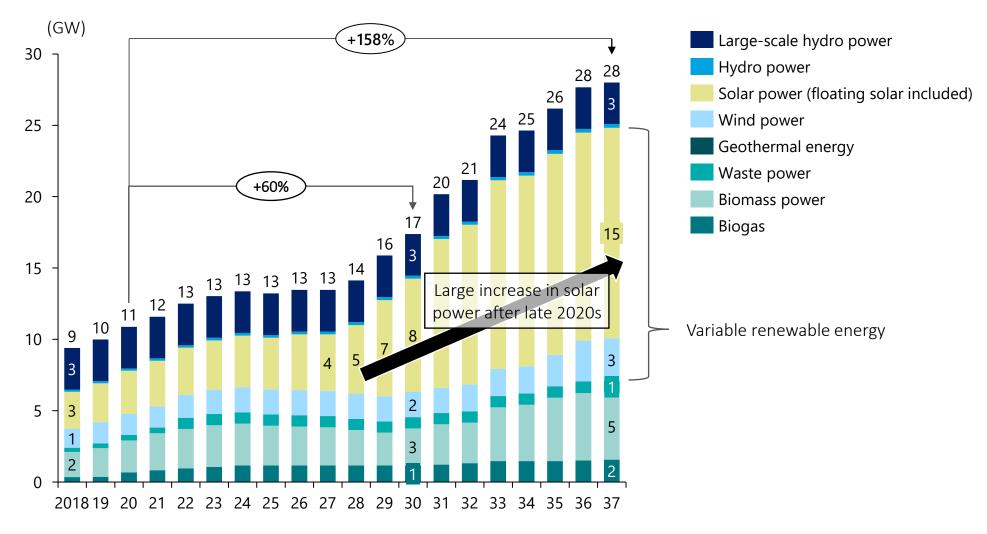
4. Climate information and M&E systems

¹²⁴ and the amount of absorption are combined.

Emissions from electricity and heat, transport and industry have been increasing in Thailand

GHG emission by sector of Thailand

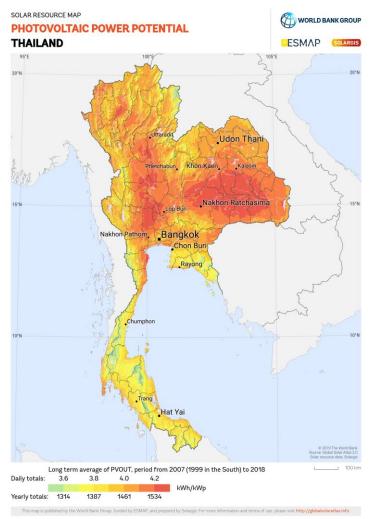
Thailand's Government shows the long-term electricity generation plan in PDP (PDP2028 Rev.1)

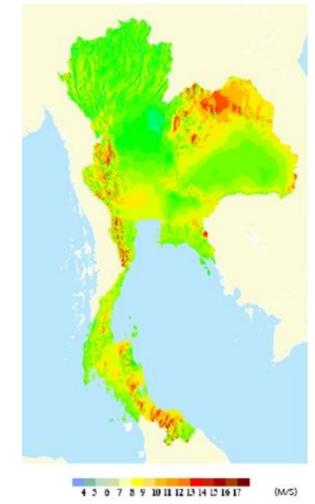

Thailand's Power Development Plan (PDP)

Document Name	Thailand's Power Development Plan 2018-2037 Revision1 (PDP2018 Rev.1)			กรรรร Reviews 1
Year of publishment	2018	Issued by	Ministry of Energy	พัฒนาราคา บา อายุครรร แผนพัฒนากำลังผลิตไฟฟ้าของประเทศไทย พ.ศ. 2561 - 2580 อบับบับบุครั้ส์ 1
Background	 Ministry of Energy had been publishing PDPs, and PDP2018 needed adjustment because of the publishment of new Alternative Energy Development Plan (AEDP) 			édevalernasserer yen 203
Purpose	 To show the long-term electricity generation blueprint of Thailand's energy transition includes the development of new power plants in the country the development of power transmission systems the purchase of electricity from neighboring countries 			
Summary	 The plan prioritizes three different areas, which includes energy security, economy, and ecology, for the next decades It mentions energy sources such as hydro power, biomass power, solar power, waste power, natural gas, and coal, and 25.7 percent of the total energy is expected to be generated from renewable sources Apart from electricity generating plan, It also includes energy efficiency measures 			

Source: Ministry of Energy (2020) "The Direction of Electricity Policy in Thailand", Ministry of Energy (2018) "Thailand's Power Development Plan 2018-2037 Revision1"

Renewable energy capacity is projected to grow, with especially large solar energy capacity increase after later 2020s

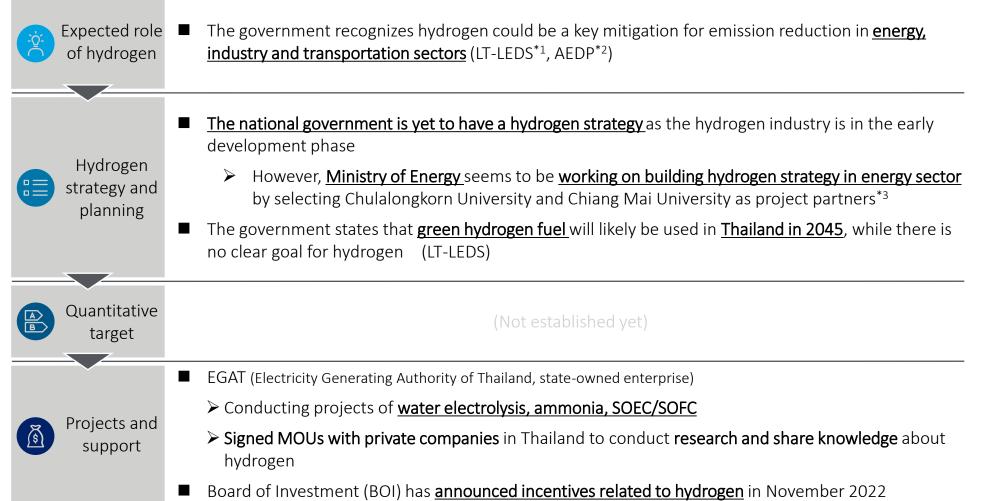

Renewable energy capacity prospect in Thailand


¹²⁷ Source: Ministry of Energy (2018) "Thailand's Power Development Plan 2018-2037 Revision1"

Reference While solar power potential is abundant around the center, wind potential exists on the margins in Thailand

Thailand Solar Potential Map

Thailand Wind Potential Map



Source: Department of Alternative Energy Development and Efficiency "Wind power and its potential in Thailand", Solargis "Solar resource maps of Thailand"

Hydrogen Policy in Thailand

Thai Government has already started hydrogen projects and support schemes. In addition, they seem to be in the process of developing a hydrogen strategy

Policy overview - Thailand

Source: Thailand's Long-term Low Greenhouse Gas Emission Development Strategy, Alternative Energy Development Plan

*1: Long-term Low Greenhouse Gas Emission Development Strategy *2: Alternative Energy Development Plan *3: According to announcement on January 19, 2023

Thailand's LT-LEDS states that green hydrogen will be important in energy, industry and transport sectors

Hydrogen in Thailand's LT-LEDS

THATLAND'S LONG-TERM LOW GREENHOUSE GAS EMISSION DEVELOPMENT STRATEGY (REVISED VERSION)

November 2022

Long-Term mitigation actions related to hydrogen in energy sector

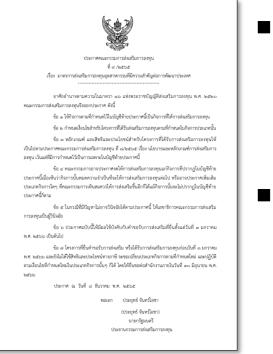
Research and development of hydrogen can be one of the key mitigation actions

technologies related to hydrogen and green hydrogen are considered to achieve GHG emissions by 2065

From the net zero GHG timeline presented in the LT-LEDS, green hydrogen fuel will likely be used in Thailand in 2045

Long-Term mitigation actions related to **hydrogen in transport sector**

Green hydrogen will be important in sectors like iron, steel, aluminum and cement


	L
(C	h

ong-Term mitigation actions related to ydrogen in transport sector

- Decarbonization opportunities in the transport sector include hybrid, plug-in hybrid, electric and FCEV
- Cost of hydrogen-powered FCEV is expected to be lower in the near future, similar to costs of EVs

Board of Investment has announced new tax incentives for hydrogen-related investment and research

Announcement of BOI No. 8/2565

- The Board of Investment (BOI) published the "Announcement of BOI No. 8/2565: Promotion of investment in industries that are important to national development" in November 2022
 - BOI is a government body that helps in promoting direct investment in Thailand by devising investment policies

BOI announced new incentives for hydrogen-related investment and research

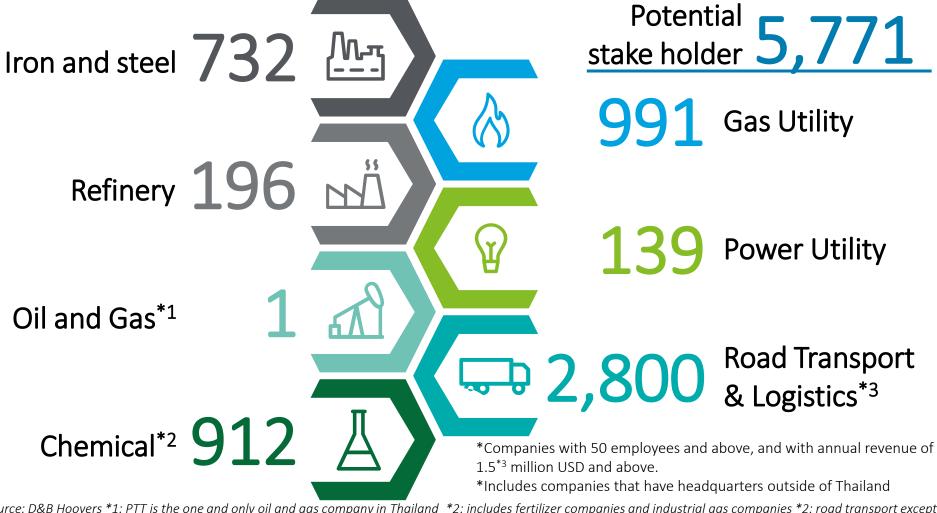
- Apart from investment in EVs (including FCEVs), following activities are eligible for tax exemption up to 10 13 years starting in January 2023:
 - ✓ Hydrogen and its derivatives from water using renewable energy
 - ✓ Electricity generated from hydrogen

Hydrogen Market and Projects in Thailand

Members of Hydrogen Thailand could build hydrogen supply chains in Thailand in corporation with each other

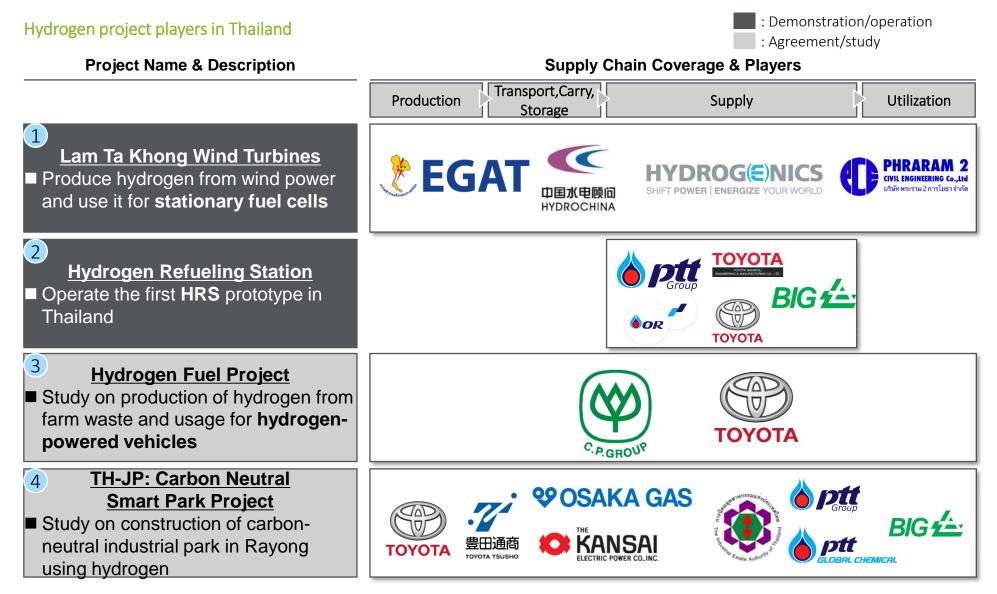
Potential hydrogen player map in Thailand^{*1}

Based on current products/services and hydrogen/fuel cell projects of the members of Hydrogen Thailand ...

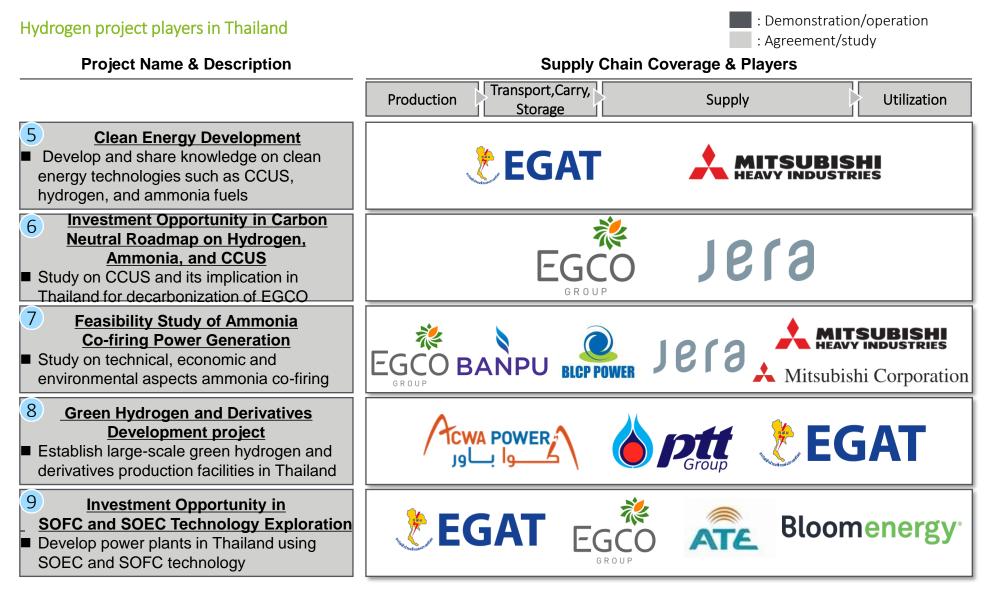

SUI&CO.

Investors

*1: Note that hydrogen players do not just include players that have core technologies but also those who are engaged with related projects

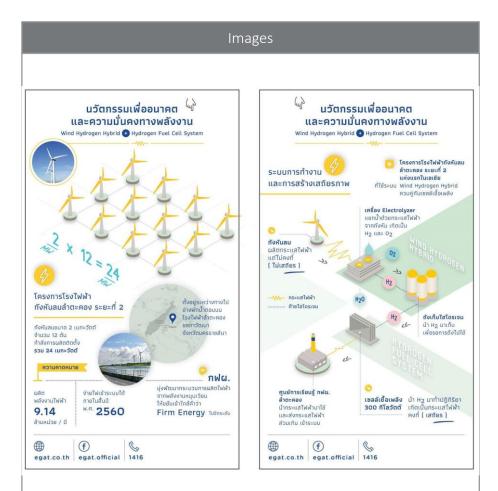

There is large potential in Thailand hydrogen market; 5,771 medium-to-large enterprises

The potential number of companies in Thailand



Source: D&B Hoovers *1: PTT is the one and only oil and gas company in Thailand *2: includes fertilizer companies and industrial gas companies *2: road transport except for rail and logistics companies (freight transport and courier) *3: Minimum annual revenue for medium sized companies in Thailand 135

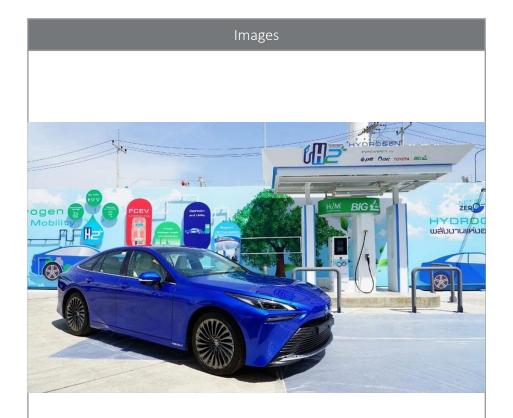
Thailand's companies such as EGAT and PTT are leading hydrogen projects in collaboration with international companies



Thailand's companies such as EGAT and PTT are leading hydrogen projects in collaboration with international companies

EGAT constructed 12 wind turbines with wind hydrogen hybrid system and fuel cell to stabilize electricity

1		
Name of project	Lam Ta Khong Wind Turbines	
Period	September 2016 – 2017 (construction), 2017 – Present (commercial operation)	
Place	Nakhon Ratchasima Province, Thailand	
Partners	 Energy Generating Authority of Thailand (EGAT) Hydrochina Corporation (Energy Company) Hydrogenics Europe N.V. (Hydrogen Technology Investor) Phraram 2 Civil Engineering Co., Ltd (developer) 	
Purpose	 It was constructed in response to governments policy on power stability by diversifying fuel mix and promoting renewable energy EGAT brought new technology, <u>Wind</u> Hydrogen Hybrid System and Fuel Cell, to conduct research and help stabilizing electricity generation from renewable energy 	
Budget	■ 42M USD (1.407B THB)	
Future plan	N/A	

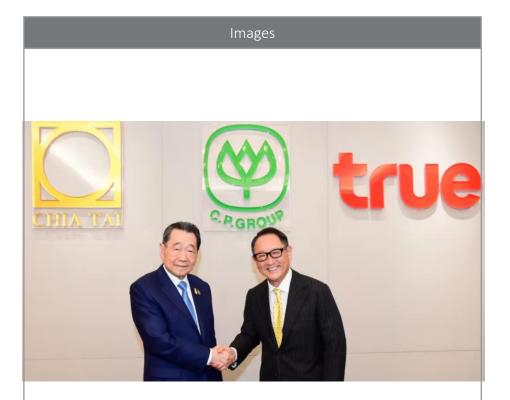


Lam Ta Khong, Nakhon Ratchasima, Thailand

138 Source: EGAT and Thailand Construction and Engineering News

PTT, OR, Toyota, and BIG collaborated on launching the first hydrogen fueling prototype station in Thailand

Name of project	Hydrogen Refueling Station	
Period	November 2022 - Present	
Place	Chonburi, Thailand	
Partners	 PTT Public Company Limited (Oil and Gas Company) PTT Oil and Retail Public Company Limited (OR) (Oil and Retail Company) Toyota Daihatsu Engineering and Manufacturing Co., Ltd (TDEM) (Engineering and Manufacturing Company) Toyota Motor Thailand Company Limited (TMT) (Vehicle Manufacturing Company) Bangkok Industrial Group (BIG) (Hydrogen Producer) 	
Purpose	 To align with Thailand's goal to achieve <u>carbon neutrality</u> and net zero emissions Data from this project will be gathered to <u>improve performance in the future</u> 	
Budget	302,315 USD (10M THB)	
Future plan	Potentially more hydrogen fueling stations in the future	



Chonburi, Thailand

139 Source: PTT website, and news articles

Toyota and C.P. Group are collaborating on Hydrogen Fuel Project

2		
Name of project	Hydrogen Fuel Project	
Period	December 2022 – unknown	
Place	Thailand	
Partners	 True Leasing (CP's transportation service business) Isuzu Motors (Vehicle Manufacturer) Toyota subsidiary Hino Motors (Vehicle Manufacturer) 	
Purpose	To study potential possibilities to <u>improve</u> <u>efficiency in the logistics industry</u> by turning <u>farm</u> <u>waste into fuel for hydrogen-powered car</u> To reduce carbon emissions in Thailand	
Budget	N/A	
Future plan	Expanding to other countries	

CP Group Senior Chairman and Toyota Motor CEO

140 Source: Nikkei Asia

Thai and Japanese companies conducted a feasibility study to construct a carbonneutral industrial park in Rayong funded

4 Name of		Images
project	TH-JP: Carbon Neutral Smart Park Project	
Period	Spring 2021 – Feb 2022	
Place	Rayong province, Thailand	
Partners	 Toyota Motor Thailand (vehicle manufacturer) Toyota Tsusho (trading company) Osaka Gas (gas company) Kansai Electricity (electricity company) IEAT (industrial park operator) PTT (gas company) PTTGC (chemical company) Bangkok Industrial Gas (industrial gas company) etc. 	Clean Energy Development WtW CO2 ZERO by Off-site Clean Electricity Transmission Image: Colspan="2" Image:
Purpose	 To conduct a <u>feasibility study about "carbon-neutral</u> <u>industrial park"</u> (600 acre) near Map Ta Put in the east part of Rayong province The project aims to <u>construct a whole hydrogen supply</u> <u>chain within the park</u> including renewable power development and fuel cell vehicle introduction 	Rayong : Solar farm Developing Developin
Budget	N/A (funded in FY 2021 by METI)	Conceptual Image of Carbon-neutral Industrial Park
Future plan	 Plan to start the construction of the park in 2023 to be in operation in 2025 Become a model case for industrial parks in other Southeast Asian countries such as Indonesia or Vietnam 	

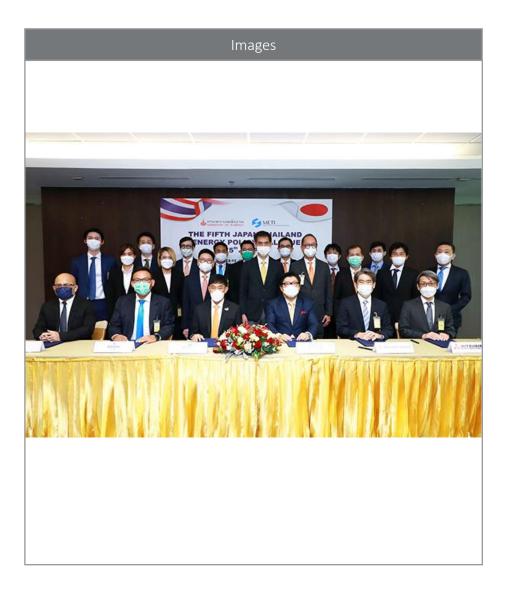
EGAT and MHI signed an MOU to study clean energy technologies

ς	
Name of project	Clean Energy Development between Electricity Generating Authority of Thailand (EGAT) and Mitsubishi Heavy Industries (Thailand) Ltd.
Period	November 2022 – 2025 (3 years)
Place	N/A
Partners	 Energy Generating Authority of Thailand (EGAT) Mitsubishi Heavy Industries (Industrial Machinery Manufacturer)
Purpose	 To develop and share knowledge on <u>clean</u> <u>energy technologies such as CCUS, hydrogen,</u> <u>and ammonia fuels</u> To <u>apply clean technologies with power</u> <u>plants in Thailand</u> to reduce carbon emissions to achieve carbon neutrality by 2050
Budget	N/A
Future plan	This MOU aims to support the national goals of reducing 40 percent of GHG by 2030 and achieving carbon neutrality by 2050 and net-zero emissions by 2065

EGAT Headquarter, Bangkok, Thailand

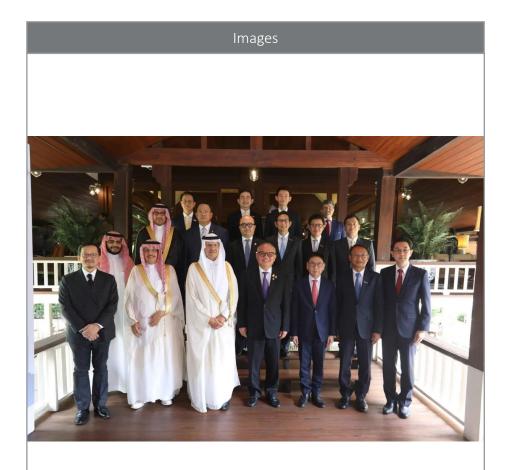
142 Source: EGAT

ECGO Group signed an MoU with JERA Asia to study the use of hydrogen, ammonia, and CCUS and achieve its carbon neutral goal


6	
Name of project	Carbon Neutral Roadmap on the Usage of Hydrogen, Ammonia, and CCUS
Period	January 2023 - unknown
Place	Bangkok, Thailand
Partners	 Electricity Generating Public Company Limited (EGCO) (Power Producer) JERA Asia Pte. Ltd. (Energy Services Provider)
Purpose	To study and research about <u>CCUS and its</u> <u>implication in Thailand</u> for decarbonization of EGCO
Budget	N/A
Future plan	EGCO to achieve carbon neutral goal by 2050

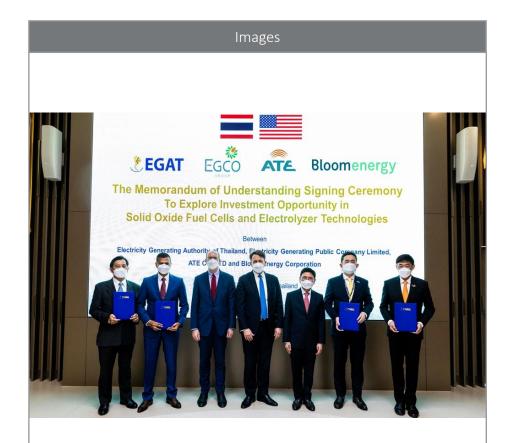
143 Source: EGCO Website

ECGO Group signed an MoU with companies to conduct feasibility study on ammonia co-firing power generation


7	
Name of project	Feasibility Study of Ammonia Co-firing Power Generation
Period	January 2023 - unknown
Place	Bangkok, Thailand
Partners	 Electricity Generating Public Company Limited (EGCO) (Power Producer) Banpu Power Public Company Limited (BPP) (Electricity Generator) BLCP Power Company Limited (Electricity Generator) JERA (Energy Services Provider) Mitsubishi Corporation (Trading Company) Mitsubishi Heavy Industries Ltd. (Industrial Machinery Manufacturer)
Purpose	To collaboratively study technical application, economic evaluation and carbon reduction plan for ammonia co-firing up to 20 percent at the BLCP 1,434 MW coal-fired power plant
Budget	N/A
Future plan	Not mentioned; however, results from the study can be beneficial in the implementation process

144 Source: EGCO Website

ACWA Power, PTT, EGAT have signed an MoU to collaborate on establishing green hydrogen and derivative production facilities in Thailand


8	
Name of project	Green hydrogen and derivatives development project
Period	November 2022 - unknown
Place	Thailand
Partners	 ACWA Power (<i>Electricity Generator</i>) PTT Public Company Limited (<i>Oil and Gas Company</i>) Electricity Generating Authority of Thailand (EGAT)
Purpose	To conduct an <u>investment feasibility study</u> to plan on <u>establishing large-scale renewable-powered</u> <u>green hydrogen and derivatives production</u> <u>facilities in Thailand</u>
Budget	■ 7B USD
Future plan	Target production is 225,000 tons of hydrogen per year

145 Source: Thai PR

EGAT, ATE, EGCO, and Bloom Energy signed an MoU to develop hydrogen technologies

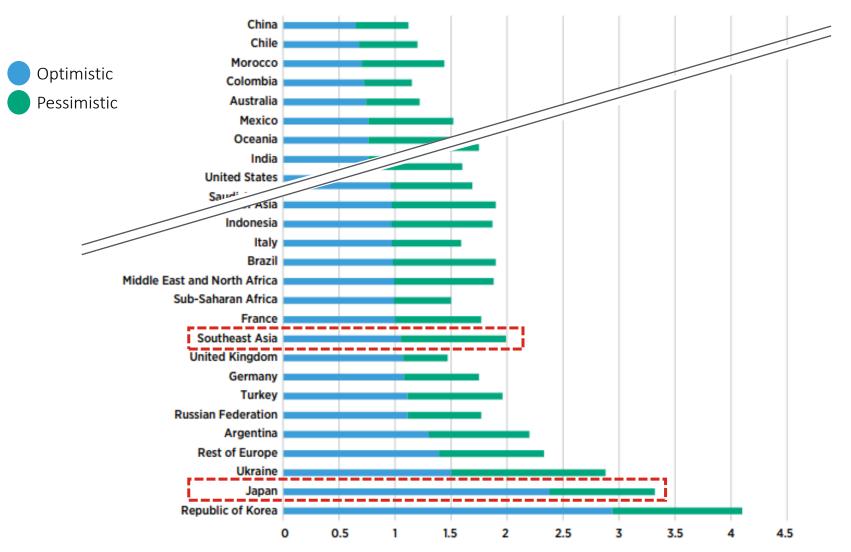
0	
Name of project	Investment Opportunity in Solid Oxide Fuel Cells and Electrolyzer Technology Exploration
Period	December 2021
Place	N/A
Partners	 Energy Generating Authority of Thailand (EGAT) ATE (Energy Company) Electric Generating Public Company Limited (EGCO) (Power Producer) Bloom Energy (Electricity Generator and Hydrogen Producer)
Purpose	To develop power plants in Thailand using <u>new energy alternatives and SOEC and SOFC</u> <u>technology</u> to pave the way to Thailand's decarbonization and energy transition to hydrogen
Budget	N/A
Future plan	This MOU aims to support the nation in achieving carbon neutrality

EGAT Headquarter, Bangkok, Thailand

146 Source: EGAT

There is large growth potential in Thai hydrogen market

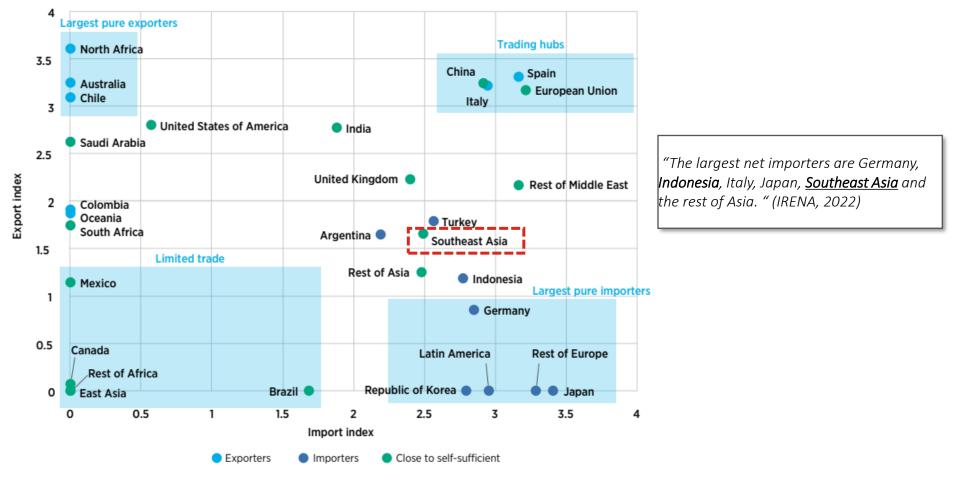
Key Takeaways


Energy Partnership of Thailand and Japar	
Energy Trend in Thailand	The government is planning to <u>increase renewables</u> , especially solar energy over 2037, to achieve the goals of -30% compared to BAU in 2030, and eventually <u>carbon neutrality by 2050</u> and <u>net-</u> <u>zero GHG emission by 2065</u>
Hydrogen Policy in Thailand	 <u>The government has recently started promoting the technology</u> by conducting projects and signing MoUs together with private companies as well as initiating the tax exemption program for hydrogen The government seems to be in the process of developing a hydrogen strategy
Hydrogen Marke in Thailand	 Major local Thai companies have been <u>starting hydrogen/fuel cell projects in Thailand</u> There is <u>large potential in hydrogen</u> related sectors in Thailand

Thai-Japan collaboration could bring synergy in the hydrogen market for both sides

Reference

According to IRENA, hydrogen production cost in Southeast Asia is expected be 1~2 USD/kg



149 Source: Global hydrogen trade to meet the 1.5 °C climate goal: Part III – Green hydrogen cost and potential,, International Renewable Energy Agency (2022)

Southeast Asia is likely to be a hydrogen importer or self-sufficient rather than an exporter

Volumes of hydrogen export and import for regions in 2050 (optimistic)

FIGURE 3.17. Volumes of hydrogen export and import for regions around the world in 2050 with *optimistic* technology assumptions

150 Source: Global hydrogen trade to meet the 1.5 °C climate goal: Part I – Trade outlook for 2050 and way forward, International Renewable Energy Agency (2022)

Deloitte.

Important notice

This document has been prepared by Deloitte Consulting Pte Ltd ("Deloitte Consulting") for the sole purpose of providing a proposal to the parties to whom it is addressed in order that they may evaluate the capabilities of Deloitte Consulting to supply the proposed services.

The information contained in this document has been compiled by Deloitte Consulting and includes material which may have been obtained from information provided by various sources and discussions with management but has not been verified or audited. This document also contains confidential material proprietary to Deloitte Consulting. Except in the general context of evaluating our capabilities, no reliance may be placed for any purposes whatsoever on the contents of this document or on its completeness. No representation or warranty, express or implied, is given and no responsibility or liability is or will be accepted by or on behalf of Deloitte Consulting or by any of its partners, members, employees, agents or any other person as to the accuracy, completeness or correctness of the information contained in this document or any other oral information made available and any such liability is expressly disclaimed.

This document and its contents are confidential and may not be reproduced, redistributed or passed on, directly or indirectly, to any other person in whole or in part without our prior written consent.

This document is not an offer and is not intended to be contractually binding. Should this proposal be acceptable to you, and following the conclusion of our internal acceptance procedures, we would be pleased to discuss terms and conditions with you prior to our appointment.

In this document, references to Deloitte are references to Deloitte Consulting which is an affiliate of Deloitte Southeast Asia Ltd, a member firm of Deloitte Touche Tohmatsu Limited.

© 2023 Deloitte Southeast Asia Ltd

About Deloitte

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited ("DTTL"), its global network of member firms, and their related entities (collectively, the "Deloitte organization"). DTTL (also referred to as "Deloitte Global") and each of its member firms and related entities are legally separate and independent entities, which cannot obligate or bind each other in respect of third parties. DTTL and each DTTL member firm and related entity is liable only for its own acts and omissions, and not those of each other. DTTL does not provide services to clients. Please see www.deloitte.com/about to learn more.

Deloitte Asia Pacific Limited is a company limited by guarantee and a member firm of DTTL. Members of Deloitte Asia Pacific Limited and their related entities, each of which are separate and independent legal entities, provide services from more than 100 cities across the region, including Auckland, Bangkok, Beijing, Hanoi, Hong Kong, Jakarta, Kuala Lumpur, Manila, Melbourne, Osaka, Seoul, Shanghai, Singapore, Sydney, Taipei and Tokyo.

Disclaimer

This communication contains general information only, and none of Deloitte Touche Tohmatsu Limited ("DTTL"), its global network of member firms or their related entities (collectively, the "Deloitte organization") is, by means of this communication, rendering professional advice or services. Before making any decision or taking any action that may affect your finances or your business, you should consult a qualified professional adviser.

No representations, warranties or undertakings (express or implied) are given as to the accuracy or completeness of the information in this communication, and none of DTTL, its member firms, related entities, employees or agents shall be liable or responsible for any loss or damage whatsoever arising directly or indirectly in connection with any person relying on this communication. DTTL and each of its member firms, and their related entities, are legally separate and independent entities.