NEDO成果報告書

Study on Business Model Development for the Technologies on Green and Carbon Neutrality in ASEAN

NRI Consulting & Solutions (Thailand) Co., Ltd. Consulting Division

2023/03/17

調査概要

調査サマリ Task 1: 重要分野の独自仮説の深掘り・検証 Task 2 & 3:事業オプションのモデルの策定・検証

調査概要・実施タスク

Task 1で重要分野の独自仮説の深掘りを行い、Task 2-3で独自仮説における事業オプションのモデルを策定・検証する。

		タスクの目的	アプローチ
Task 1 (2か月 ~)	重要分野の独自仮説の 深掘り・検証	 グリーン分野の重要分野に関する独自仮説について、事業 オプションのモデル策定をしていく重要分野の深掘りや検証 を行い、日系企業の事業オプションのモデル策定の基礎資 料を作成する。 	 ASEAN主要6か国の現地企業の"生声"をもとに、フォーカスを する重要分野における課題・ニーズについてインタビューで 深掘りをする。 課題・ニーズを踏まえて、外部とどのようなパートナーシップを 必要としているか、把握する。 日系企業が提供できるソリューションについて、把握する。
Task 2 (1.5か月 ~)	事業オプションの モデルの策定	 ASEAN主要6か国において、重要分野における事業オプ ションのモデルを策定して、その中でNEDOが提供できる価 値を明らかにすることにより、国際実証事業のモデルケースを 策定する。 	 既存事例によるベンチマークを行い、事業を最大化するために、 どのような体制が最適か、整理する。 既存事例のベンチマークをもとに、事業オプションの顧客セグメ ント、提供価値、商流、マネタイズ方法を決定して、その中で NEDO等の公的機関との連携するメリットについても明らかに する。
Task 3 (1.5か月 ~)	事業オプションの モデルの検証	 策定した重要分野における事業オプションのモデルに対する、 ASEAN現地・日系企業のフィードバックを踏まえ、検証 およびブラッシュアップをする。 	 日系企業との議論を通じて、事業オプションのモデルを検証・ ブラッシュアップする。

タスクの全体像と流れ

重要分野の深掘りは、ASEAN現地企業および日系企業のそれぞれの観点から行い、事業 オプションのモデル策定は、既存事例のベンチマークを踏まえて実施することを想定している。

✓ 本プロジェクトのゴール:

グリーン分野の重要分野における、日系企業にとっての有望な領域が具体化(=深掘り)しており、そこにおける事業オプションのモデルが構築されている状態。

調査概要

調査サマリ

1. 重要分野の独自仮説の深掘り・検証

2. 事業オプションのモデルの策定・検証

Task 1: 重要分野の独自仮説の深掘り・検証

Task 2 & 3: 事業オプションのモデルの策定・検証

- ■カーボンニュートラルの重要分野において、CCS/CCUSやアンモニア・水素など、本格的な社会実装がまだ先の分野においても、ASEAN現地企業は日系企業以外にも欧米、アジア(中国、韓国等)などの主要な海外企業と既に幅広く連携をしており、どの国の企業とパートナーシップを構築すべきか、見極めを行っている段階にある。
- ■日系企業は、ターゲット国の重要分野における現地企業の技術ニーズを、社会実装が開始される前の段階から 見極め、事業主体となる、主要な現地企業(国営・財閥系のエネルギー会社等)を含めた事業体制を構築することによって、ASEANカーボンニュートラルでのビジネス機会を獲得できると考える。

調査概要

調査サマリ

1. 重要分野の独自仮説の深掘り・検証

2.事業オプションのモデルの策定・検証

Task 1: 重要分野の独自仮説の深掘り・検証

Task 2 & 3: 事業オプションのモデルの策定・検証

List of Local Companies which Interviews were Conducted

NRI conducted interviews to understand the issues and needs, as well as the partnership of local companies for each of the selected priority area.

List of ASEAN Companies which Interview were Conducted

Cotogory		Company				
Category	Priority Area	Name	Description			
	CCS / CCUS	Petronas	Energy company			
Malaysia	Ammonia / Hydrogen	Petronas	Energy company			
	Ammonia / Hydrogen	TNB	Electricity company			
	CCS / CCUS	PTTEP	Energy company			
	Green Manufacturing	CP Foods	Food manufacturing (Large size)			
Thailand	Green Manufacturing	Thai Beverage	Food manufacturing (Large size)			
	Green Manufacturing	Sunshine International	Food manufacturing (Mid size)			
	Green Building	Sansiri / SC Asset	Real estate developer			
	Renewable Energy	Medco Power	Electricity company			
Indonesia	Ammonia / Hydrogen	Pertamina	Energy company			
	Ammonia / Hydrogen	PLN	Electricity company			
	Renewable Energy	Trung Nam	Electricity company			
Vietnam	Green Manufacturing	Vinfast	Automotive manufacturer			
	Green Manufacturing	Tan A Dai Thanh Group	Water solution manufacturer			
	Renewable Energy	Aboitiz	Electricity company			
Philippines	Renewable Energy	Meralco	Electricity company			
	Smart City	Ayala Land	Real estate developer			
Laos	Renewable Energy	EDL Gen	Electricity company			

CCS / CCUS (Malaysia): Potential Value Proposition by Japanese Companies

Japanese technology can help address the issues regarding the cost and energy efficiency for CCS / CCUS, which are major issues for local companies.

High added value

Cost Reduction

<i>c</i> .			Example of Value Proposition by Japanese Companies			
Category	Issues / Needs of Local Companies		Benefit		Technology	
Capture	Large amount of energy is required during the CO2 capture		Reduce energy during CO2 capture in emission source		Energy saving CO2 capture system	
Capture	CO2 capture cost is high	7	Reduce cost during capture in CO2 emission source		Low-cost CO2 capture system	
Transportation	Economic efficiency of the vessels low	+	Increase efficiency in cross-border / domestic transportation		Multi-purpose vessels (e.g. Carry ammonia and LCO2)	
Transportation	GHG emission during transportation	+•	Reduce GHG emission in cross-border / domestic transportation		Clean energy fueled vessels (e.g. ammonia-fueled)	
Storage	Safety and security of storage sites		Reduce the risk of leakage of CO2 when storing CO2 for long period		Storage and monitoring system for safe storage	
Utilization	Cost reduction for carbon recycle					
Utilization	Adding value to the product manufactured	-	Has value added other than low GHG emission during production		Value-added carbon recycle products	

Ammonia / Hydrogen (Malaysia): Potential Value Proposition by Japanese Companies

When developing green and blue ammonia / hydrogen, technological issues remain, in which Japanese technological solutions can support local companies.

High added value

Cost Reduction

Catanan	lawar (Nacida of Local Communica		Example of Value Proposition by Japanese Companies			
Category	Issues / Needs of Local Companies	Benefit		Technology		
	Enhancing efficiency and durability of electrolyzer (green ammonia / hydrogen)		Increase efficiency while maintaining reliability		Advanced electrolyzer technology	
Production	High cost due to fluctuation of renewable energy (green ammonia / hydrogen)	_	Lower cost of production by efficiently utilizing RE		Hydrogen energy management system	
	Gaining technology to control the CO2 emission (blue ammonia / hydrogen)		⇒Refer to the business models in CCS / CCUS			
	Lack of specialized transportation vessels (ammonia / hydrogen)	-	 Provide safe and efficient transportation 		Specialized transportation vessels	
Transportation/ Storage	Development of transportation terminal (ammonia / hydrogen)] 	Increase the capacity for export / import of hydrogen / ammonia		Port terminal for ammonia / hydrogen	
	Development of technology for safe large scale storage (ammonia / hydrogen)		Increase the safety of ammonia / hydrogen storage		High safety large scale storage tanks	
	Increasing the amount which can be used for co- firing (ammonia / hydrogen)		Enable co-firing with higher % of ammonia / hydrogen		Ammonia / hydrogen co-firing	
Utilization	Reducing the Nox from emission (ammonia)		Reduce the amount of Nox generated from ammonia		Ammonia(NH3) Removal Catalyst	
	Reducing the cost for power generation utilization (ammonia/ hydrogen)					

CCS / CCUS (Thailand): Potential Value Proposition by Japanese Companies

Japanese technology can help address the issues regarding the cost and energy efficiency for CCS / CCUS, which are major issues for local companies.

High added value

Cost Reduction

Catanama	laura / Nacida of Local Communica	_	Example of Value Proposition by Japanese Companies			
Category	Issues / Needs of Local Companies		Benefit		Technology	
	Large amount of energy required		Reduce energy during capture in CO2 emission source		Energy saving CO2 capture system	
Capture	High CO2 capture cost	-	Reduce cost during capture in CO2 emission source		Low-cost CO2 capture system	
	CO2 source has impurities apart from CO2	+	Remove impurities efficiently		High impurities removal technology	
	Economic efficiency of the vessels low	+	Increase efficiency in transportation		Multi-purpose vessels (e.g. ammonia+LCO2)	
Iransportation	Safety of the pipeline transportation	┢	Increase the safety level for pipeline		Durable materials to prevent leakage	
	Safety of the storage system		Reduce the risk of leakage of CO2 when storing CO2 for long period		Storage and monitoring	
Storage	Ensuring a stable monitoring system				system for safe storage	
	Cost reduction for carbon recycle					
Utilization	Energy required during the production process		Reduce the amount of CO2 required during carbon recycle		Low CO2 carbon recycle	

Green manufacturing (Thailand): Potential Value Proposition by Japanese Companies

Implementation of energy management and energy saving solutions still remain a key issue, in which Japanese technologies can support with the issues.

High added value

Cost Reduction

Catanan	Issues / Needs of Local Companies		Example of Value Proposition by Japanese Companies			
Category			Benefit	Technology		
	Making equipment IoT ready	 	Make the equipment IoT ready	IoT ready machine / equipment		
Energy	Utilizing cloud system which can collect data in a structured manner	 				
Management	Implementation of AI technology to analyse the data collected		Visualize the energy utilized, to optimize the energy usage	Energy management system		
	Integrating data in different divisions					
Francesing	Robotics with more durability	} →	Enable robotics with higher durability	High durability robotics		
Energy saving	Usage of equipment with lower energy consumption		Reduces the energy consumed	Energy saving compressors		
	High initial investment cost for renewable energy (e.g. solar)	 	Reduces the cost of initial investment	Low cost solar power		
Green energy	Instability of battery technology	 	Stabilizes the storage battery	Ctore no hotton /		
	High cost of storage battery	 	Reduces the cost required for storage battery			
	Lack of technology for usage of hydrogen in factory	┣►	Enables the usage of hydrogen in factory	Hydrogen power generation		

Green Building (Thailand): Potential Value Proposition by Japanese Companies

Implementation of energy management and energy saving solutions still remain a key issue, in which Japanese technologies can support with the issues.

Example of Value Proposition by Japanese Companies Category Issues / Needs of Local Companies Benefit Technology Connect the devices and equipment Lack of IoT equipped equipment IoT Systems to utilize the data efficiently **Energy Saving** Limited choice of energy management systems (e.g. usage of AI for analysis) Energy Management Optimize the energy usage, by Energy management system understanding how the energy is used Energy control and management is not centralized Battery storage too expensive to install for solar Reduce the cost to install battery Low cost battery storage power generation storage system **Green Energy** Wind turbine too expensive to install Green Reduce the GHG emission reduction Certified materials for GHG Limited amount of certified green materials **Materials** within scope 3 reduction

Source: Created by NRI based on interviews and publicly available sources

Cost Reduction

High added value

Renewable Energy (Indonesia): Potential Value Proposition by Japanese Companies

Issues for renewable energy differ across the power generation type, in which Japanese solutions can support with addressing the issues.

High added value

Cost Reduction

c .			Example of Value Proposition by Japanese Companies			
Category	Issues / Needs of Local Companies		Benefit	Technology		
	Geothermal: High investment cost for exploration drilling]	Lower the investment cost required for exploratory drilling	Low cost drilling technology		
Power	Solar: High cost of energy storage]	Lower investment cost for energy storage	Low cost storage battery		
Generation	Lack of know-how for waste management regarding the renewable energy equipment]	Circular model for waste coming from the equipment	Recycling system for equipment		
	Solar module technology of local company is low (Needs to have 40% local products)]	Provide advanced technology for solar power generation	Solar power module technology		
Distribution /	Electricity loss during distribution/transmission]	Stabilizes the grid for distribution /	Crid stabilization system		
Transmission	Instability for grid, especially for low voltage]	transmission	Grid stabilization system		
Retail	Development of new technology to utilize excess energy]	Utilize excess electricity for green solutions	Electricity to hydrogen / ammonia		

Ammonia / Hydrogen (Indonesia): Potential Value Proposition by Japanese Companies

When developing green and blue ammonia / hydrogen, technological issues remain, in which Japanese technological solutions can support local companies.

High added value Cost I

Cost Reduction

Catanam	Issues / Needs of Local Companies		Example of value Proposition by Japanese Companies			
Category			Benefit		Technology	
	Low stability due to fluctuation of renewable energy (Green ammonia / hydrogen)		Stabilize the production when using renewable energy		Advanced PEM electrolyzer technology	
Production	High cost due to fluctuation of renewable energy (green ammonia / hydrogen)					
	Requires large amount of energy for Harber-Bosh process (ammonia)		Reduce the amount of energy required to manufacture ammonia		New ammonia manufacturing process	
	Lack of specialized transportation vessels (ammonia / hydrogen)]	Provide safe and efficient transportation		Specialized transportation vessels	
Transportation/ Storage	Requires large amount of energy for conversion from ammonia to hydrogen]	Reduce the amount of energy required for conversion		Photocatalytic reactors	
	Development of technology for safe storage (ammonia / hydrogen)]	Increase the safety of ammonia / hydrogen storage		High safety storage tanks	
	Increasing the amount which can be used for co- firing (ammonia / hydrogen)]	Enable co-firing with higher % of ammonia / hydrogen		Ammonia / hydrogen co-firing	
	Improving the performance when using hydrogen for gas-turbines]	Maintain performance when utilizing hydrogen		Combustion technology with high adaption	
Ounzation	Reducing the Nox from emission (ammonia)]	Reduce the amount of Nox generated from ammonia		Ammonia(NH3) Removal Catalyst	
	Need to develop infrastructure for industrial (e.g. steel) and FCV usage		Enable usage in steel manufacturing process		Steel production facility with ammonia usage	

Renewable Energy (Vietnam): Potential Value Proposition by Japanese Companies

Issues for renewable energy differ across the power generation type, in which Japanese solutions can support with addressing the issues.

High added value

Cost Reduction

Catanami	Issues / Needs of Local Companies		Example of Value Proposition by Japanese Companies			
Category			Benefit		Technology	
	(Waste-to-energy) Difficult to secure materials sufficiently		Able to secure raw materials more efficiently		Regionally independent system	
	High investment cost for storage battery		Lower investment cost for energy storage		Low cost storage battery	
Power Generation	(Solar) Instability of power generation					
	(Wind) Instability of power generation, without hybrid with other types (e.g. hydro)	/				
	Lack of know-how for pumped storage hydro power		Able to adjust the supply for hydro		Pumped hydro power generation	
Distribution	Increasing the capacity of transmission line:		Increase the volume for transmission		Grid stabilizing system	
Retail	Development of new technology to utilize excess energy		Utilize excess electricity for green solutions		Electricity to hydrogen/ ammonia	

Renewable Energy (Philippines): Potential Value Proposition by Japanese Companies

Regarding the issues and needs of local companies, the potential value proposition by Japanese companies are the following.

High added value

Cost Reduction

Catagoni	lawar / Needs of Local Commonis-	Example of value Proposition by Japanese Companies			
Category	issues / Needs of Local Companies	Benefit	Technology		
	Geothermal: High initial investment for drilling	• Lower the investment cost required for drilling	Low cost drilling technology		
	Geothermal: Difficult to control the steam	 Efficiently control and manage the steam 	Intelligent steam control system		
Power	Wind: Data collection for identification of suitable land for wind is too expensive	Able to collect wind data in a cost efficient manner	Low cost wind data collection system		
Generation	Solar: High cost of energy storage	Lower investment cost for energy storage	Low cost storage battery		
	Biomass & Waste-to-energy: Difficult to secure materials sufficiently	Able to secure raw materials more efficiently	Regionally independent system		
	Wind & Hydro: Instability due to seasonality				
Distribution /	Instability / electricity loss during distribution/transmission	Stabilizes the grid for distribution / transmission	Grid stabilization system		
Transmission	Insufficient capacity for distribution / transmission:				

Smart City (Philippines): Potential Value Proposition by Japanese Companies

Key issues for smart city development are regarding energy, security, and mobility in which Japanese solutions are available to help address the issues.

High added value

Cost Reduction

Catanami	Issues / Needs of Local Companies		Example of Value Proposition by Japanese Companies			
Category			Benefit	Technology		
	Lack of connectivity for smart grid technology	1	Able to monitor and utilize the data efficiently	Smart meter / smart grid		
	Limited area and lack of safety monitoring system for large size battery for city supply	-	Smaller sized storage batteries for the smart city	Small-sized storage battery		
Energy	Difficult for individuals to install solar panel at the households	+	Lower the price for solar panel installation	Low price solar panel technology		
	High initial investment for energy management in and IoT conversion	┢	Lower the price for the installation of energy management	Low price energy management system		
	Human errors from manual reporting system					
C it.	Lack of natural disaster management system		Enhance the resilience towards natural disasters	Natural disaster prevention system		
Security	Lack of responsive and automated security system		Automate the security system for real- time data usage	Real time security system		
Mobility	Lack of connected transportation system and parking identify system for private driver		Automatic connected system for parking	Parking lot monitoring system		

Renewable Energy (Laos): Potential Value Proposition by Japanese Companies

Wide range of issues and needs across power generation types, in which the Japanese companies' solutions can help address the issues.

Example of Value Proposition by Japanese Companies Issues / Needs of Local Companies Category Benefit Technology Hydro: Instability based on seasonality Solar: Instability based on lack of storage systems, Able to store the excess power during Low price battery storage sunny period, in a cost efficient manner given the high price of battery storage system Power Biomass: Instability based on fluctuation of raw Increase the variety of biomass power Alternative biomass power Generation material (sugarcane) availability generation materials generation Able to adjust the supply for hydro, by Hybrid (Hydro & Solar): Hybrid using reservoir or Difficult to regulate, as hydro is mostly run-of river using reservoir pumped hydro Able to evaluate the potential of Exploration of geothermal Geothermal: Lack of understanding on feasibility and supply capacity geothermal power generation potential Reduce loss during distribution Energy loss during transmission transmission Distribution / Grid stabilizing system Transmission Increase the volume for transmission Limited volume for transmission Can't fully utilize excess electricity as difficult to anticipate surplus energy Retail Utilize excess electricity for green Electricity to hydrogen / Development of new technology to utilize excess solutions energy ammonia

Source: Created by NRI based on interviews and publicly available sources

Cost Reduction

High added value

調査概要

調査サマリ

1. 重要分野の独自仮説の深掘り・検証

2. 事業オプションのモデルの策定・検証

Task 1: 重要分野の独自仮説の深掘り・検証

Task 2 & 3: 事業オプションのモデルの策定・検証

Hydrogen / Ammonia (Malaysia) - Example of Business Model (Green Hydrogen Export)

Providing technology to support production and transportation will provide business opportunities for Japanese companies.

Local Company's Needs

- Malaysia aims to become a major exporter of ammonia / hydrogen, in which one of the drivers is expected to be the implementation of carbon tax and carbon credit in overseas countries (e.g. Japan, South Korea)
- To increase the amount of ammonia / hydrogen which can be exported overseas, local energy companies are aiming to receive technology which will enable efficient conversion from renewable energy to ammonia / hydrogen, as well as the technology for the transportation

Resource of Japanese Companies

- Electrolyzer manufacturer:
 - Provide electrolyzer for local energy companies, which enables the production of green hydrogen in a stable manner
- Hydrogen transportation company:
 - Provides energy carrier for safe and stable transportation
- Trading companies, energy companies
 - Support the development of overall supply chain from Malaysia to overseas companies as the business developer

Business Model (Domestic Production and Export of Green Hydrogen)

Hydrogen / Ammonia (Indonesia) - Example of Business Model (Electrolyzer & Co-fire Power Generation)

Providing technology to support production and utilization of green hydrogen / ammonia will provide business opportunities for Japanese companies.

Local Company's Needs

- Indonesian energy companies aim to increase the supply of ammonia and hydrogen, to utilize the resources for CO2 reduction within the country
- For the supply of hydrogen and ammonia, one of the key requirements is technology to produce green hydrogen efficiently
- For the demand-side, technology to increase the amount of ammonia for co-fire power plants is required from overseas companies

Resource of Japanese Companies

- Electrolyzer manufacturer:
 - Provide electrolyzer for local energy companies, which enables the production of green hydrogen in a stable manner
- Heavy industry company
 - Provide the facility for ammonia co-fire power plant generation
- Trading companies, energy companies
 - Support the development of overall supply chain within Indonesia as the business developer

Business Model (Domestic Production and Domestic Utilization of Green Hydrogen / Ammonia)

CCS/CCUS (Malaysia) - Example of Business Model (Carbon Capture)

Providing CO2 capture in an energy and cost efficient manner to gas reservoirs, industries, and power generation will provide opportunities for JP companies.

Local Company's Needs

- Malaysia aims to become a regional hub for CO2 storage in Asia, to function as a storage for both domestic and international CO2 sources
- For domestic CO2 sources, local companies require technology to capture carbon, in a cost and energy efficient manner
- Local companies are looking for partnership with overseas companies which has the above technology

Resource of Japanese Companies

- EPC company:
 - Provide carbon capture facility to the local companies
- Chemical company
 - Provide carbon capture materials to the local CO2 source company, which enables CO2 capture in an energy and cost efficient manner
- Trading companies, energy companies
 - Support the development of overall supply chain within Malaysia

Business Model (Carbon Capture Facility / Material)

> Products, Goods, Service -> Money -> Action <-> Partnership Japanese Company with Technology						
	CO2 source company expected to benefit from	Item	Description			
Carbon Capture	Power generation Industrial (e.g. cement) Gas reservoir Bacility /Material Gas reservoir Fee JP EPC Company Support with demonstration	Product of JP Company with Technology	 Carbon capture facility / material for CO2 source which enables CO2 capture in an energy and cost efficient manner 			
Trans- portation	CO2 Ships Pipelines Partnership	Target Customer	 Companies with CO2 emission such as; Power generation companies Industries which CO2 emission is hard to avoid (e.g. cement) Gas reservoirs 			
Storage / Utilization	Storage Utilization CO2 Storage Site Carbon recycle facility Co. Develop supply chain Partnership Petronas	Partner	Japanese trading companyJapanese energy company			

CCS/CCUS (Thailand) - Example of Business Model (Carbon Capture)

Providing CO2 capture in an energy and cost efficient manner to industries and power generation companies will provide opportunities for JP companies.

Local Company's Needs

- In Thailand, local energy companies and industry players are aiming to leverage CCS/CCUS across various industries, including fossil fuel power generation and industrial process (e.g. cement, chemicals)
- Within the supply chain, local companies require technology to capture carbon, in a cost and energy efficient manner
- Local companies are looking for partnership with overseas companies which has the above technology

Business Model (Carbon Capture Facility / Material)

Resource of Japanese Companies

- EPC company:
 - Provide carbon capture facility to the local companies
- Chemical company
 - Provide carbon capture materials to the local CO2 source company, which enables CO2 capture in an energy and cost efficient manner
- Trading companies, energy companies
 - Support the development of overall supply chain within Thailand

Renewable Energy (Indonesia) - Example of Business Model (Geothermal)

Solutions with technology to manage the power generation of renewable energy efficiently can develop opportunities for Japanese solution providers.

Local Company's Needs

- In Indonesia, power generation companies are aiming to increase the renewable energy power generation, for areas such as geothermal and solar power generation
- For geothermal power generation, one of the key issues is the stability, such as technology to control the amount of steam

Resource of Japanese Companies

- Electric manufacturer: Provide technology which supports with the control of steam for geothermal power generation
- Trading company: Invest in the power generation with local player, and support with the introduction of the Japanese solution provider

Business Model (Geothermal Power Generation)

Renewable Energy (Philippines) - Example of Business Model (Wind Power)

Solutions with technology to manage the power generation of renewable energy efficiently can develop opportunities for Japanese solution providers.

Local Company's Needs

- In the Philippines, power generation companies are aiming to increase renewable energy power generation such as solar power and wind power generation
- For wind power generation, one of the key issues is identifying the amount of wind available for power generation within specific areas

Resource of Japanese Companies

- Electric manufacturer: Provide technology which supports with the identification in terms of the amount of wind available
- Trading company: Invest in the power generation with local player, and support with the introduction of the Japanese solution provider

Source: Created by NRI based on interviews and publicly available sources

Business Model (Wind Power Generation)

Renewable Energy (Vietnam) - Example of Business Model (Electrolyzer)

Solutions with technology to utilize the excess renewable energy efficiently will provide opportunities for Japanese companies.

Local Company's Needs

- In Vietnam, renewable energy is aimed to be further implemented, in which availability of technology for the utilization of excess electricity generated from renewable energy is lacking
- Power generation companies are looking into technology which supports with the above, including technology which converts excess solar and wind power into green hydrogen

Resource of Japanese Companies

• Electrolyzer manufacturer: Provide electrolyzer which enables the conversion from renewable energy to green hydrogen

Business Model (Electrolyzer to Utilize Excess Electricity Effectively)

Renewable Energy (Laos) - Example of Business Model (Electrolyzer)

Solutions with technology to utilize the excess renewable energy efficiently will provide opportunities for Japanese companies.

Local Company's Needs

- In Laos, the country has a large amount of renewable energy power generation capacity, in which availability of technology for the utilization of excess electricity generated from renewable energy is lacking
- Power generation companies are looking into technology which supports with the above, including technology which converts excess hydro power generation into green hydrogen

Resource of Japanese Companies

• Electrolyzer manufacturer: Provide electrolyzer which enables the conversion from renewable energy to green hydrogen

Source: Created by NRI based on interviews and publicly available sources

NRI 27

Business Model (Electrolyzer to Utilize Excess Electricity Effectively)

Smart City (Philippines) - Example of Business Model (Mobility)

Providing solutions which supports with transportation issues may support the business development of Japanese companies.

Local Company's Needs

- In the Philippines, smart city development is currently conducted by key players including real estate developers, in which key issues which need to be resolved are security, mobility, and energy efficiency
- Major players are aiming to develop smart solutions, which enables not only the wellbeing of the citizens but also to address issues regarding green and carbon neutrality

Resource of Japanese Companies

- Data analysis company:
 - Collects and analyzes the traffic data from local data company
- Data visualization company:
 - Utilizes the data and provides data visualization service for the residents (e.g. Provide suggestion on how to avoid the traffic congestion)

Business Model (Mobility Service for Smart Cities)

→ Products, Goods, Service - > Money → Action ← Partnership Japanese Company with Technology Local real estate Description Item company Government (Smart City Developer) Partnership for Visualization services which supports resolving Product of masterplan Partnership traffic congestion issues JP Company development Subsidy (e.g. GIS system which visualizes the amount of road with Fee Technology traffic) JP data visualization Local Smart City Developer company Traffic data visualization Data Target Smart Service service Fee Local smart city developer analysis Customer services Fee results JP data analysis Resident / Local company NEDO company Support with Traffic Mobility solution provider Partner demonstration Fee Data Local data company

Green Building (Thailand) - Example of Business Model (Energy Management)

Providing solutions which supports with energy saving / energy management may support the business development of Japanese companies.

Local Company's Needs

- In Thailand, many major real estate developers have set targets for the environment including GHG reduction and carbon neutrality
- To achieve the target, current technology is not sufficient, and hence local developers are looking into technology providers for GHG reduction
- Within the areas, energy saving and energy management are one of the core areas for the local company's needs

Resource of Japanese Companies

• Company which provides energy saving (e.g. air conditioners) and energy management products

RI 29

調査概要 調査サマリ

Task 1: 重要分野の独自仮説の深掘り・検証

Task 2 & 3: 事業オプションのモデルの策定・検証

現地企業のニーズおよび

日系企業が出来るソリューション

CCS / CCUS (Malaysia): Potential Value Proposition by Japanese Companies

Japanese technology can help address the issues regarding the cost and energy efficiency for CCS / CCUS, which are major issues for local companies.

High added value

Cost Reduction

C 1			Example of Value Proposition by Japanese Companies			
Category	Issues / Needs of Local Companies		Benefit		Technology	
Capture	Large amount of energy is required during the CO2 capture		Reduce energy during CO2 capture in emission source		Energy saving CO2 capture system	
	CO2 capture cost is high	7	Reduce cost during capture in CO2 emission source		Low-cost CO2 capture system	
Transportation	Economic efficiency of the vessels low	+	Increase efficiency in cross-border / domestic transportation		Multi-purpose vessels (e.g. Carry ammonia and LCO2)	
	GHG emission during transportation	╞╸	Reduce GHG emission in cross-border / domestic transportation		Clean energy fueled vessels (e.g. ammonia-fueled)	
Storage	Safety and security of storage sites		Reduce the risk of leakage of CO2 when storing CO2 for long period		Storage and monitoring system for safe storage	
Utilization	Cost reduction for carbon recycle					
	Adding value to the product manufactured		Has value added other than low GHG emission during production		Value-added carbon recycle products	

CCS / CCUS (Malaysia): Example of Technology by Japanese Companies

Example of technologies provided by Japanese companies are the following.

		Solutions by Japanese Companies				
Category	Overview of Technology	Company Name	Description of Technology			
Capture	Energy saving CO2 capture system	Nippon Steel Engineering	Energy saving carbon capture for industrial process using chemical absorption			
		Kawasaki Heavy Industry & KEPCO	Energy saving carbon capture in power generation facility using solid absorption			
	Low cost CO2 Capture System	Mitsubishi Heavy Industries	Lowered cost carbon capture in power generation facilities by utilizing small sized compressors (to reduce CAPEX) and automation / AI technology (to reduce OPEX)			
		Chiyoda Corporation	Lowered cost carbon capture in power generation facilities			
Trans- portation	Multi-purpose vessels	Mitsubishi Shipbuilding	Efficient transportation method by being able to carry both ammonia and LCO2			
		Mitsui O.S.K Lines (MOL)	Efficient transportation method by being able to carry both ammonia and LCO2			
	Clean energy fueled vessels	NYK Line	Lower GHG emission transportation by "ammonia-ready" (=able to use ammonia as fuel in the future) LNG fueled vessels			
		Mitsui O.S.K Lines (MOL)	Lower GHG emission transportation by large scaled ammonia fuel vessel			
		Kawasaki Kisen Lower GHG emission transportation by ammonia fuel vessel	Lower GHG emission transportation by ammonia fuel vessel			
Storage	Monitoring and system for long-term storage	JGC	Construction of storage facility which enables stable long-term storage			
		INPEX	Safe storage technology for large-scaled CO2 stored			
Utilization	Value-added	Chiyoda	CO2 reforming technology which enables manufacturing of gas in a energy efficient manner, using CO2 as an ingredient			
	products	Mitsubishi Heavy Industries	CO2 reforming technology "electrofuel" which enables CO2 reduction when using the fuel as well			

Source: Created by NRI based on news articles, METI, and company websites of Nippon Steel, KEPCO, MHI, RITE, MHI, MOL, NYK Line, JGC, INPEX, Chiyoda Corporation

Ammonia / Hydrogen (Malaysia): Potential Value Proposition by Japanese Companies

When developing green and blue ammonia / hydrogen, technological issues remain, in which Japanese technological solutions can support local companies.

High added value

Cost Reduction

Catagoria			Example of Value Proposition by Japanese Companies				
Category	issues / Needs of Local Companies	Benefit		Technology			
Production	Enhancing efficiency and durability of electrolyzer (green ammonia / hydrogen)		Increase efficiency while maintaining reliability		Advanced electrolyzer technology		
	High cost due to fluctuation of renewable energy (green ammonia / hydrogen)		Lower cost of production by efficiently utilizing RE		Hydrogen energy management system		
	Gaining technology to control the CO2 emission (blue ammonia / hydrogen)		⇒Refer to the business models in CCS / CCUS				
Transportation/ Storage	Lack of specialized transportation vessels (ammonia / hydrogen)		Provide safe and efficient transportation		Specialized transportation vessels		
	Development of transportation terminal (ammonia / hydrogen)		Increase the capacity for export / import of hydrogen / ammonia		Port terminal for ammonia / hydrogen		
	Development of technology for safe large scale storage (ammonia / hydrogen)		Increase the safety of ammonia / hydrogen storage		High safety large scale storage tanks		
Utilization	Increasing the amount which can be used for co- firing (ammonia / hydrogen)		Enable co-firing with higher % of ammonia / hydrogen		Ammonia / hydrogen co-firing		
	Reducing the Nox from emission (ammonia)	 	Reduce the amount of Nox generated from ammonia		Ammonia(NH3) Removal Catalyst		
	Reducing the cost for power generation utilization (ammonia/ hydrogen)						

Example of technologies provided by Japanese companies are the following.

		Solutions by Japanese Companies				
Category	Overview of Technology	Company Name	Description of Technology			
Production	Advanced	Asahi Kasei	Large-scaled alkaline water electrolyzer "Aqualyzer", which has high capability to adjust to fluctuation of power (Participated in over 150 projects and delivered total of 10GW worth of electrolyzers)			
	technology	Toshiba	PEM electrolyzer for converting renewable energy into green hydrogen, which has high capability to adjust to fluctuation of power			
	Hydrogen Energy Management System	ENEOSHokkaido ElectricJFE Engineering	Next-generation water electrolysis energy management system which seeks to reduce the cost of producing hydrogen by effectively using excess electricity from renewable energy			
Trans- portation / Storage	Specialized transportation	Mitsui O.S.K Lines (MOL)	Ammonia transportation vessels, such as a 35,000 cbm-type ammonia /LPG carrier			
	Vessels for ammonia / hydrogen	Kawasaki Heavy Industries	Liquefied hydrogen carrier which is planned to be used to develop hydrogen supply chain			
	Port terminal for ammonia / hydrogen	Kawasaki Heavy Industries	Terminal for liquified hydrogen which uses technology such as "loading arm system," which is planned to be used to develop hydrogen supply chain			
		ІНІ	Large scaled terminal which enables a large amount of ammonia to be imported into the country from overseas			
	High safety large scale storage tanks	Kawasaki Heavy Industries	Storage system for liquified hydrogen, which is planned to be used to develop hydrogen supply chain			
		Toyo Kanetsu	"Large-scale liquefied hydrogen storage tank" and "Ammonia storage tank" in order to reduce CO ₂ emissions amid the urgent need to switch to next-generation energy with low environmental impact.			
Utilization	Ammonia /	IHI	Aiming to achieve the percentage of ammonia co-fired power generation to 20% by 2023			
	co-firing	Mitsubishi Heavy Industries	Aiming to increase the percentage of ammonia co-fired power generation to 50% by 2028			
	Ammonia(NH3) Removal Catalyst	Nikki Universal	Ammonia removal catalysts that suppress the generation of these byproducts of NOx and N2O.			

Source: Created by NRI based on news articles and company websites of Asahi Kasei, Toshiba, ENEOS, MOL, Sumitomo Corporation, Kawasaki Heavy Industries, IHI, Toyo Kanetsu, MHI, and Nikki Universal
CCS / CCUS (Thailand): Potential Value Proposition by Japanese Companies

Japanese technology can help address the issues regarding the cost and energy efficiency for CCS / CCUS, which are major issues for local companies.

High added value

Cost Reduction

Catal	laws (Needs of Local Communics	Example of Value Proposition by Japanese Companies			
Category	Issues / Needs of Local Companies	Benefit	Technology		
Capture	Large amount of energy required	Reduce energy during capture in CO2 emission source	Energy saving CO2 capture system		
	High CO2 capture cost	Reduce cost during capture in CO2 emission source	Low-cost CO2 capture system		
	CO2 source has impurities apart from CO2	Remove impurities efficiently	High impurities removal technology		
Transportation	Economic efficiency of the vessels low	Increase efficiency in transportation	Multi-purpose vessels (e.g. ammonia+LCO2)		
	Safety of the pipeline transportation	→ Increase the safety level for pipeline	Durable materials to prevent leakage		
Storage	Safety of the storage system	Reduce the risk of leakage of CO2	Storage and monitoring		
	Ensuring a stable monitoring system	 when storing CO2 for long period 	system for safe storage		
Utilization	Cost reduction for carbon recycle				
	Energy required during the production process	Reduce the amount of CO2 required during carbon recycle	Low CO2 carbon recycle		

Source: Created by NRI based on interviews and publicly available sources

CCS / CCUS (Thailand): Example of Technology by Japanese Companies

Example of technologies provided by Japanese companies are the following.

		Solutions by Japanese Companies					
Category	Overview of Technology	Company Name	Description of Technology				
	Energy saving CO2	Nippon Steel Engineering	Energy saving carbon capture for industrial process using chemical absorption				
Capture	capture system	Kawasaki Heavy Industry & KEPCO	Energy saving carbon capture in power generation facility using solid absorption				
	Low cost CO2	Mitsubishi Heavy Industries	Lowered cost carbon capture in power generation facilities by utilizing small sized compressors (to reduce CAPEX) and automation / AI technology (to reduce OPEX)				
	Capture System	Chiyoda Corporation	Lowered cost carbon capture in power generation facilities				
	High impurities	Nippon Steel Engineering	Energy saving carbon capture for industrial process using chemical absorption, which can collect CO2 from gas which has high proportion of impurities				
	removal technology	Mitsubishi Heavy Industries	Able to capture CO2 from gas with high amount of impurities efficiently, from industries such as steel manufacturing and waste burning				
	Multi-purpose	Mitsubishi Shipbuilding	Efficient transportation method by being able to carry both ammonia and LCO2				
Trans-	vessels	Mitsui O.S.K	Efficient transportation method by being able to carry both ammonia and LCO2				
portation	Strong materials to prevent CO2 leakage (pipeline)	Nippon Steel	Seamless steel pipes which was primarily used for oil reservoirs, which has high durability in deep underground areas				
Champion	Storage and	JGC	Construction of storage facility which enables stable long-term storage				
Storage	for safe storage	INPEX	Safe storage technology for large-scaled CO2 stored				
Utilization	Low energy carbon	Toyo Engineering	Make chemical products from methanol, which can be made from the CO2 captured during CCUS, and hydrogen which comes from renewable energy, which uses reduced amount of energy during the process				
ounzation	recycle	Asahi Kasei	Make polycarbonate using CO2 as an ingredient, in which the amount of energy required during the process is reduced				

Source: Created by NRI based on news articles, METI, and company websites of Nippon Steel, KEPCO, MHI, RITE, MHI, MOL, JGC, INPEX, Chiyoda Corporation

Green manufacturing (Thailand): Potential Value Proposition by Japanese Companies

Implementation of energy management and energy saving solutions still remain a key issue, in which Japanese technologies can support with the issues.

High added value

Cost Reduction

Catanan	Issues / Needs of Local Companies		Example of Value Proposition by Japanese Companies			
Category		_	Benefit	Technology		
Energy Management	Making equipment IoT ready	 	• Make the equipment IoT ready	loT ready machine / equipment		
	Utilizing cloud system which can collect data in a structured manner	 				
	Implementation of AI technology to analyse the data collected		Visualize the energy utilized, to optimize the energy usage	Energy management system		
	Integrating data in different divisions					
Energy saving	Robotics with more durability	 	Enable robotics with higher durability	High durability robotics		
	Usage of equipment with lower energy consumption		Reduces the energy consumed	Energy saving compressors		
	High initial investment cost for renewable energy (e.g. solar)		Reduces the cost of initial investment	Low cost solar power		
Green energy	Instability of battery technology	 	Stabilizes the storage battery			
	High cost of storage battery		Reduces the cost required for storage battery	Storage battery		
	Lack of technology for usage of hydrogen in factory	┣	Enables the usage of hydrogen in factory	Hydrogen power generation		

Source: Created by NRI based on interviews and publicly available sources

Example of technologies provided by Japanese companies are the following.

		Solutions by Japanese Companies				
Category	Overview of Technology	Company Name	Description of Technology			
	IoT ready machine /	Panasonic	HD-PLC solutions, which build network for equipment management from existing power lines			
Enorgy	equipment	Mitsubishi Electric	Programmable controller to connects equipment to network for data management and optimization			
Energy management	Energy management	Yokogawa Electric	Factory energy management system that collect and accumulate data, analyze data for further improvement, optimize operation patterns and energy consumption, and execute the control device			
	system	Panasonic	Energy management that can reduce energy, optimally manage locally generated and stored energy. Panasonic also helps monitor these equipment from remote locations			
	High durability	Fujitsu	Automatic machines to deal with fluctuations in demand and labor shortages with post-implementation and operational support			
	robotics	Mitsubishi Electric System & Service	Construction and operation industrial robot systems with aftersales service			
Energy saving	Energy saving compressors	Enetech	Energy saving compressors			
		Hitachi Industrial Equipment Systems	Energy saving compressors			
		KDDI	Energy saving compressors			
	Low cost solar power	Panasonic	Industrial PV power generation system			
Green energy	Storage batten	Marubeni Eneble	Industrial large lithium-ion storage battery that can secure a stable power supply			
	Storage battery	Eneman	High performance off-grid battery system that can ensure stable supply			
	Hydrogen power	МН	Hydrogen manufacturing and gas power generation facility which enables the usage of hydrogen for fuel			
	generation	Air Water Plant & Engineering	Hydrogen gas generator for on-site gas supply to manufacturers of optical fibers, steel, solar batteries cells, etc.			

Source: Created by NRI based on news articles and company websites of Panasonic, Mitsubishi Electric, Yokogawa Electric, Fujitsu, Enetech, Hitachi, KDDI, Marubeni Eneble, Eneman, MHI, Air Water Plant & Engineering

Green Building (Thailand): Potential Value Proposition by Japanese Companies

Implementation of energy management and energy saving solutions still remain a key issue, in which Japanese technologies can support with the issues.

Example of Value Proposition by Japanese Companies Category Issues / Needs of Local Companies Benefit Technology Connect the devices and equipment Lack of IoT equipped equipment IoT Systems to utilize the data efficiently **Energy Saving** Limited choice of energy management systems (e.g. usage of AI for analysis) Energy Management Optimize the energy usage, by Energy management system understanding how the energy is used Energy control and management is not centralized Battery storage too expensive to install for solar Reduce the cost to install battery Low cost battery storage power generation storage system **Green Energy** Wind turbine too expensive to install Green Reduce the GHG emission reduction Certified materials for GHG Limited amount of certified green materials **Materials** within scope 3 reduction

Source: Created by NRI based on interviews and publicly available sources

Cost Reduction

High added value

Green Building (Thailand): Example of Technology by Japanese Companies

Example of technologies provided by Japanese companies are the following.

	Querrieuref	Solutions by Japanese Companies			
Category	Technology	Company Name	Description of Technology		
	loT equipped	Mitsubishi Electric	Provides IoT platform and IoT ready devices to connect the devices to the cloud system		
Energy Saving / Energy Management	machines	Panasonic	Provides IoT platform and IoT ready devices to connect the devices to the cloud system		
	Energy Management System	Hitachi	Provides energy management system for the building to monitor, analyze, control, and report the energy utilized for improvement		
		Mitsubishi Electric	Provides energy management system to save energy, improve the comfort of the building tenant, and improve the value of the property.		
Green	Low cost	Next Energy	Provides storage battery for power generated in the building, in which the storage is set as one unit, resulting in enabling lower cost		
Energy	system	Idemitsu Energy Solution	Provides storage battery for power generated in the building, utilizing lead-acid as a material, which helps with the cost reduction.		
Green Material	Certified materials for	JFE Steel	Provides concrete which has reduced CO2 during production process by 75%		
	GHG reduction	Takenaka	Provides cement which has reduced CO2 during production process by 60%		

Renewable Energy (Indonesia): Potential Value Proposition by Japanese Companies

Issues for renewable energy differ across the power generation type, in which Japanese solutions can support with addressing the issues.

High added value

Cost Reduction

c .	Issues / Needs of Local Companies		Example of Value Proposition by Japanese Companies			
Category			Benefit	Technology		
	Geothermal: High investment cost for		Lower the investment cost required for exploratory drilling	Low cost drilling technology		
Power Generation	Solar: High cost of energy storage]	Lower investment cost for energy storage	Low cost storage battery		
	Lack of know-how for waste management regarding the renewable energy equipment		Circular model for waste coming from the equipment	Recycling system for equipment		
	Solar module technology of local company is low (Needs to have 40% local products)]	Provide advanced technology for solar power generation	Solar power module technology		
Distribution / Transmission	Electricity loss during distribution/transmission		Stabilizes the grid for distribution / transmission	Crid stabilization system		
				Grid stabilization system		
Retail	Development of new technology to utilize excess energy]	Utilize excess electricity for green solutions	Electricity to hydrogen / ammonia		

Source: Created by NRI based on interviews and publicly available sources

Example of technologies provided by Japanese companies are the following.

	Overview of	Solutions by Japanese Companies				
Category	Technology	Company Name	Description of Technology			
Power Generation	Low cost drilling	Mitsubishi Material	Cutter for drilling the ground using "polycrystalline diamond compact" which enables cheaper and faster drilling when developing the geothermal power plants.			
	technology	INPEX Drilling	Prevents lost circulation when drilling to reduce the cost and risks when drilling to develop geothermal plants.			
	Low cost storage	Mitsubishi Electric, Obayashi, GS Yuasa	Low cost storage battery system, which reduced the initial and running cost by optimizing the capacity in the facility			
	battery	NGK	A megawatt-level energy storage system that uses sodium and sulfur, which is large scaled and cost competitive compared to other storage batteries			
	Recycling	Next Energy	Uses recycling / reuse technology and purchase unnecessary used modules, identify and sell only reliable			
	equipment	Marubeni	Provide an information sharing platform utilizing blockchain, to efficiently collect used solar panels and reuse/recycle efficiently.			
	Solar power module technology	Nagase	Solar power module production technology			
		Next Energy & Resource	Solar power module production technology			
Distribution/	Grid stabilization	Hitachi	Stabilize the power grid utilizing the technology "OpenVQ" system, resulting in reduction of power loss and increasing the power distribution capacity			
Transmission	system	Mitsubishi Electric	Stabilize the power grid, to maintain the quality of the power grid operation.			
Retail	Electricity to	Hitachi Zosen	Produce hydrogen from excess electricity and water			
	ammonia	Toshiba	Produce hydrogen from excess electricity and water			

Source: Created by NRI based on news articles and company webpages of Mitsubishi Material, INPEX, Mitsubishi Electric, NGK, Next Energy, Marubeni, Nagase, Hitachi, Hitachi Zosen, Toshiba

43

Ammonia / Hydrogen (Indonesia): Potential Value Proposition by Japanese Companies

When developing green and blue ammonia / hydrogen, technological issues remain, in which Japanese technological solutions can support local companies.

High added value Cost F

Cost Reduction

Calassi	lawar (Needa of Local Companies		Example of Value Proposition by Japanese Companies			
Category	Issues / Needs of Local Companies		Benefit		Technology	
Production	Low stability due to fluctuation of renewable energy (Green ammonia / hydrogen)		Stabilize the production when using renewable energy		Advanced PEM electrolyzer technology	
	High cost due to fluctuation of renewable energy (green ammonia / hydrogen)					
	Requires large amount of energy for Harber-Bosh process (ammonia)		Reduce the amount of energy required to manufacture ammonia		New ammonia manufacturing process	
Transportation/ Storage	Lack of specialized transportation vessels (ammonia / hydrogen)		Provide safe and efficient transportation		Specialized transportation vessels	
	Requires large amount of energy for conversion from ammonia to hydrogen		Reduce the amount of energy required for conversion		Photocatalytic reactors	
	Development of technology for safe storage (ammonia / hydrogen)		Increase the safety of ammonia / hydrogen storage		High safety storage tanks	
	Increasing the amount which can be used for co- firing (ammonia / hydrogen)		Enable co-firing with higher % of ammonia / hydrogen		Ammonia / hydrogen co-firing	
Utilization	Improving the performance when using hydrogen for gas-turbines		Maintain performance when utilizing hydrogen		Combustion technology with high adaption	
	Reducing the Nox from emission (ammonia)		Reduce the amount of Nox generated from ammonia		Ammonia(NH3) Removal Catalyst	
	Need to develop infrastructure for industrial (e.g. steel) and FCV usage		Enable usage in steel manufacturing process		Steel production facility with ammonia usage	

Source: Created by NRI based on interviews and publicly available sources

Ammonia / Hydrogen (Indonesia): Example of Technology by Japanese Companies

Example of technologies provided by Japanese companies are the following.

Solutions by Japanese Compani			Solutions by Japanese Companies
Category	Overview of Technology	Company Name	Description of Technology
	Advanced	Asahi Kasei	Large-scaled alkaline water electrolyzer "Aqualyzer", which has high capability to adjust to fluctuation of power (Participated in over 150 projects and delivered total of 10GW worth of electrolyzers)
Production	technology	Toshiba	PEM electrolyzer for converting renewable energy into green hydrogen, which has high capability to adjust to fluctuation of power
	New ammonia manufacturing process	JGC	Developed a new ammonia synthesis catalyst that is highly active at low temperature and pressure; and reduces the energy consumption
	Specialized	Mitsui O.S.K Lines	Ammonia transportation vessels, such as a 35,000 cbm-type ammonia /LPG carrier
Trans- Portation / Storage	Vessels for ammonia / hydrogen	Kawasaki Heavy Industries	Liquefied hydrogen carrier which is planned to be used to develop hydrogen supply chain
	Photocatalytic reactors	Sumitomo Corporation	Produces hydrogen with lower energy, lower cost and higher efficiency than ordinary pyrolysis.
	High safety storage	Kawasaki Heavy Industries	Storage system for liquified hydrogen, which is planned to be used to develop hydrogen supply chain
	tanks	Toyo Kanetsu	"Large-scale liquefied hydrogen storage tank" and "Ammonia storage tank" in order to reduce CO ₂ emissions amid the urgent need to switch to next-generation energy with low environmental impact.
	Ammonia /	ІНІ	Aiming to achieve the percentage of ammonia co-fired power generation to 20% by 2023
	co-firing	Mitsubishi Heavy Industries	Aiming to increase the percentage of ammonia co-fired power generation to 50% by 2028
	Combustion	Kawasaki	Enables the existing natural gas turbine to be utilized without modification to its main body, and the whole turbine system to be capable of adapting to the hydrogen's unique combustion property.
Utilization	high adaption	МНІ	Enables co-firing of hydrogen and gas in a sustainable manner
	Ammonia(NH3) Removal Catalyst	Nikki Universal	Ammonia removal catalysts that suppress the generation of these byproducts of NOx and N2O.
	Steel production facility with ammonia usage	Nippon Steel	Enables to utilize hydrogen in the production process while enabling an efficient steel manufacturing

ammonia usage
Source: Created by NRI based on news articles and company webpages of Asahi Kasei, Toshiba, JGC, MOL, Sumitomo Corporation, Kawasaki Heavy Industries, Toyo Kanetsu, IHI, MHI, Nikki Universal, Nippon Steel

Renewable Energy (Vietnam): Potential Value Proposition by Japanese Companies

Issues for renewable energy differ across the power generation type, in which Japanese solutions can support with addressing the issues.

High added value

Cost Reduction

Catanami	laguas / Naada of Lagal Companies		Example of Value Proposition by Japanese Companies			
Category	issues / Needs of Local Companies		Benefit		Technology	
	(Waste-to-energy) Difficult to secure materials sufficiently		Able to secure raw materials more efficiently		Regionally independent system	
Power Generation	High investment cost for storage battery		Lower investment cost for energy storage		Low cost storage battery	
	(Solar) Instability of power generation					
	(Wind) Instability of power generation, without hybrid with other types (e.g. hydro)	/				
	Lack of know-how for pumped storage hydro power		Able to adjust the supply for hydro		Pumped hydro power generation	
Distribution	Increasing the capacity of transmission line:		Increase the volume for transmission		Grid stabilizing system	
Retail	Development of new technology to utilize excess energy		Utilize excess electricity for green solutions		Electricity to hydrogen/ ammonia	

Source: Created by NRI based on interviews and publicly available sources

Example of technologies provided by Japanese companies are the following.

		Solutions by Japanese Companies				
Category	Overview of Technology	Company Name	Description of Technology			
	Regionally	Erex	Provides service to develop the supply chain for biomass power generation, including the diversification of the materials and ensuring sustainable supply			
Power Generation	system	Sumitomo Corporation	Imports biomass materials, to support biomass power plant power generation facilities in receiving materials sustainably			
	Low cost storage	Mitsubishi Electric, Obayashi, GS Yuasa	Low cost storage battery system, which reduced the initial and running cost by optimizing the capacity in the facility			
	battery	NGK	A megawatt-level energy storage system that uses sodium and sulfur, which is large scaled and cost competitive compared to other storage batteries			
	Reservoir hydro- power generation	TEPCO	Power generation utilizing reservoir-based and pumped storage hydro, as well as solar power generation			
		J-Power	Power generation utilizing reservoir-based and pumped storage hydro, as well as solar power generation			
Distribution	Grid stabilizing system	Hitachi, TEPCO	Stabilize the power grid utilizing the technology "OpenVQ" system, resulting in reduction of power loss and increasing the power distribution capacity			
Detail	Electricity to	Hitachi Zosen	Produce hydrogen from excess electricity and water			
Retail	ammonia	Toshiba	Produce hydrogen from excess electricity and water			

Source: Created by NRI based on news articles and company webpages of Erex, Sumitomo Corporation, Mitsubishi Electric, NGK, TEPCO, J-Power, Hitachi, Hitachi Zosen, Toshiba

Renewable Energy (Philippines): Potential Value Proposition by Japanese Companies

Regarding the issues and needs of local companies, the potential value proposition by Japanese companies are the following.

High added value

Cost Reduction

Catanami	lawar / Nacida of Lagal Communica	Example of value Proposition by Japanese Companies			
Category		Benefit	Technology		
Power Generation Distribution / Transmission	Geothermal: High initial investment for drilling	 Lower the investment cost required for drilling 	Low cost drilling technology		
	Geothermal: Difficult to control the steam	 Efficiently control and manage the steam 	Intelligent steam control system		
	Wind: Data collection for identification of suitable land for wind is too expensive	Able to collect wind data in a cost efficient manner	Low cost wind data collection system		
	Solar: High cost of energy storage	Lower investment cost for energy storage	Low cost storage battery		
	Biomass & Waste-to-energy: Difficult to secure materials sufficiently	Able to secure raw materials more efficiently	Regionally independent system		
	Wind & Hydro: Instability due to seasonality				
	Instability / electricity loss during distribution/transmission	Stabilizes the grid for distribution / transmission	Grid stabilization system		
	Insufficient capacity for distribution / transmission:				

Source: Created by NRI based on interviews and publicly available sources

Example of technologies provided by Japanese companies are the following.

	Quartient of	Solutions by Japanese Companies				
Category	Technology	Company Name	Description of Technology			
	Low cost drilling	Mitsubishi Material	Cutter for drilling the ground using "polycrystalline diamond compact" which enables cheaper and faster drilling when developing the geothermal power plants.			
	technology	INPEX Drilling	Prevents lost circulation when drilling to reduce the cost and risks when drilling to develop geothermal plants.			
	Intelligent steam	Mitsubishi Heavy Industries	O&M system which uses cloud data to monitor the steam, and can utilize remote control system when issues occur.			
	control system	Toshiba Energy Systems	Trouble prevention system using AI / IoT technology, which helps predict issues arising from the steam, and prevent beforehand.			
Power Generation	Low cost wind data collection system	Obayashi	Wind data collection using a small sized floating data collection object, which can collect data in a cost efficient way compared to towers			
		Japan Weather Association	Wind data collection using a small sized floating data collection object ("BuoyLidar"), which can collect data in a cost efficient way compared to towers			
	Low cost storage battery	NGK	A megawatt-level energy storage system that uses sodium and sulfur, which is large scaled and cost competitive compared to other storage batteries			
	Regionally	Erex	Provides service to develop the supply chain for biomass power generation, including the diversification of the materials and ensuring sustainable supply			
	system	Sumitomo Corporation	Imports biomass materials, to support biomass power plant power generation facilities in receiving materials sustainably			
Distribution/	Grid stabilization	Hitachi	Stabilize the power grid utilizing the technology "OpenVQ" system, resulting in reduction of power loss and increasing the power distribution capacity			
Transmission	system	Mitsubishi Electric	Stabilize the power grid, to maintain the quality of the power grid operation.			

Source: Created by NRI based on news articles, JOGMEC, Japan Weather Association, and company webpages of MHI, Obayashi, NGK, Erex, Sumitomo Corporation, Hitachi, Mitsubishi Electric

49

Smart City (Philippines): Potential Value Proposition by Japanese Companies

Key issues for smart city development are regarding energy, security, and mobility in which Japanese solutions are available to help address the issues.

High added value

Cost Reduction

Catanami	lawar / Needs of Local Companies		Example of Value Proposition by Japanese Companies				
Category	issues / Needs of Local Companies		Benefit	Technology			
	Lack of connectivity for smart grid technology	1	Able to monitor and utilize the data efficiently	Smart meter / smart grid			
	Limited area and lack of safety monitoring system for large size battery for city supply		Smaller sized storage batteries for the smart city	Small-sized storage battery			
Energy	Difficult for individuals to install solar panel at the households	+	Lower the price for solar panel installation	Low price solar panel technology			
	High initial investment for energy management in and IoT conversion		Lower the price for the installation of energy management	Low price energy management system			
	Human errors from manual reporting system						
C it.	Lack of natural disaster management system		Enhance the resilience towards natural disasters	Natural disaster prevention system			
Security	Lack of responsive and automated security system		Automate the security system for real- time data usage	Real time security system			
Mobility	Lack of connected transportation system and parking identify system for private driver		Automatic connected system for parking	Parking lot monitoring system			

Source: Created by NRI based on interviews and publicly available sources

Smart City (Philippines): Example of Technology by Japanese Companies

Example of technologies provided by Japanese companies are the following.

		Solutions by Japanese Companies			
Category	Overview of Technology	Company Name	Description of Technology		
	Smart grid technology	Hitachi	Provides analytics system to support the smart grid implementation		
	Smart gnu technology	Yokogawa	Provides community energy management system leveraging smart grids		
Energy	Concil stand stars as bottom.	Panasonic	Small-sized storage battery for solar power generation		
Lifergy	Small-sized storage battery	Kyosera	Small-sized storage battery for solar power generation		
	Low price solar panel technology Panasonic Industrial PV power generation system		Industrial PV power generation system		
	Low price energy management system I Grid Solutions Provides energy management system in a cost effi		Provides energy management system in a cost efficient manner		
	Natural disaster prevention	Hitachi	Offers solutions on disaster prevention in smart city through AI solutions		
Convitu	system	NEC Corporation	Provides services such as disaster prevention dashboard for residents, flood detection service, water level monitoring service (reservoirs, rivers, etc.), and reliable news system		
Security		Ryomo	Provides real time monitoring system for children		
	Real time security system	Minebea Mitsumi	Provides real time security monitoring system for smart cities		
	Parking lot monitoring	Ryomo	Provides real time monitoring system for availability of parking lots		
Mobility	system	Minebea Mitsumi	Provide parking sensor to detect available parking lots		

Renewable Energy (Laos): Potential Value Proposition by Japanese Companies

Wide range of issues and needs across power generation types, in which the Japanese companies' solutions can help address the issues.

Example of Value Proposition by Japanese Companies Issues / Needs of Local Companies Category Benefit Technology Hydro: Instability based on seasonality Solar: Instability based on lack of storage systems, Able to store the excess power during Low price battery storage sunny period, in a cost efficient manner given the high price of battery storage system Power Biomass: Instability based on fluctuation of raw Increase the variety of biomass power Alternative biomass power Generation material (sugarcane) availability generation materials generation Able to adjust the supply for hydro, by Hybrid (Hydro & Solar): Hybrid using reservoir or Difficult to regulate, as hydro is mostly run-of river using reservoir pumped hydro Able to evaluate the potential of Exploration of geothermal Geothermal: Lack of understanding on feasibility and supply capacity geothermal power generation potential Reduce loss during distribution Energy loss during transmission transmission Distribution / Grid stabilizing system Transmission Increase the volume for transmission Limited volume for transmission Can't fully utilize excess electricity as difficult to anticipate surplus energy Retail Utilize excess electricity for green Electricity to hydrogen / Development of new technology to utilize excess solutions energy ammonia

Source: Created by NRI based on interviews and publicly available sources

Cost Reduction

High added value

Renewable Energy (Laos): Example of Technology by Japanese Companies

Example of technologies provided by Japanese companies are the following.

		Solutions by Japanese Companies			
Category	Overview of Technology	Company Name	Description of Technology		
	Low price battery	Mitsubishi Electric, Obayashi, GS Yuasa	Low cost storage battery system, which reduced the initial and running cost by optimizing the capacity in the facility		
	storage system	NGK	A megawatt-level energy storage system that uses sodium and sulfur, which is large scaled and cost competitive compared to other storage batteries		
	Regionally	Erex	Provides service to develop the supply chain for biomass power generation, including the diversification of the materials and ensuring sustainable supply		
Power	independent system	Sumitomo Corporation	Imports biomass materials, to support biomass power plant power generation facilities in receiving materials sustainably		
Generation	Reservoir hydro- power generation	TEPCO	Power generation utilizing reservoir-based and pumped storage hydro, as well as solar power generation		
		J-Power	Power generation utilizing reservoir-based and pumped storage hydro, as well as solar power generation		
	Exploration of geothermal potential	J-Power	Exploration, development, and operation of geothermal power plants		
		Kyushu Electricity	Exploration, development, and operation of geothermal power plants		
Distribution/ Transmission	Grid stabilizing system	Hitachi, TEPCO	Stabilize the power grid utilizing the technology "OpenVQ" system, resulting in reduction of power loss and increasing the power distribution capacity		
Utilization	Electricity to	Hitachi Zosen	Produce hydrogen from excess electricity and water		
Utilization	hydrogen / ammonia	Toshiba	Produce hydrogen from excess electricity and water		

Source: Created by NRI based on news articles and company webpages of Obayashi, NGK, Erex, Sumitomo Corporation, TEPCO, J-Power, Kyushu Electricity, Hitachi Zosen, Toshiba

53

調査概要

調査サマリ

Task 1: 重要分野の独自仮説の深掘り・検証

Task 2 & 3:事業オプションのモデルの策定・検証

既存事例の整理

Petronas has shown interest in partnership with Japanese and European companies, for both specific technology and supply chain development.

Key Partnerships for Petronas with Overseas and Domestic Companies

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
Japan	 Japan Petroleum Exploration 	• Oil and gas producer	• MoU	• Jan 22~	 Explore CCS opportunities, CO₂ storage solutions by identifying suitable methods of carbon capture, storage, transportation, estimation of emission and capture volumes for inside and outside Malaysia
Japan	• Mitsui O.S.K. Lines	 Logistics service provider 	• MoU	• Feb 22~	 Explore opportunities in liquefied CO₂ transportation for CCUS value chain in Asia Pacific and Oceania regions
Japan	• Mitsui & Co.	 General trader, logistics and financing services provider 	• MoU	• Jun 22~	 Conduct feasibility studies on CCS value chain in various industries, evaluation of CO₂ storage sites in Malaysia, CO₂ transportation, and technology in direct air capture
Norway	• DNV Group AS	 Assurance and risk management services provider 	• MoU	• July 22~	 Address challenges of CCUS deployment in safety, environment, risk, technology, qualification of storage sites, legislation, regulation, capability development, and commercial areas
UK	• Shell PLC	• Oil and gas producer	 Joint Study and Collabo -ration Agreement 	• Jan 22~	 Conduct the joint CCS area development plan study on decarbonisation service for CO₂ storage solutions in Malaysia and the region

Source: Created by NRI based on company webpage of Petronas, DNV

Korean companies aim to enhance partnership with Petronas, by forming a team of Korean companies in which each company has strength in different areas.

Key Partnerships for Petronas with Overseas and Domestic Companies

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
Korea	 POSCO International Corporation 	 General trader, energy and resource development service provider 	• MoU •	• Dec 21~	 Explore the opportunities in CCS technologies and CO₂ storage solutions with performing technical maturation activities in Malaysia
	• POSCO Engineering & Construction	 Engineering and Construction service provider 			
Korea	• Samsung Engineering	 Engineering service provider 	• MoU •	• Aug 22~	 Conduct feasibility studies on a full value chain related to CO₂ capture, transport and storage by evaluating potential CO₂ storage sites in Malaysia, exploring other areas across CCS value chain, and strengthening cross-border CO₂ transportation
Korea	 Samsung Heavy Industries 	• Shipbuilder			
Korea	• SK Earthon	• Oil and gas producer			
Korea	• SK Energy	 Oil producer and gas station operator 			
Korea	• GS Energy Corporation	 Oil, gas and renewable energy producer 			
Korea	Lotte Chemical Corporation	Chemicals producer			

CCS / CCUS (Malaysia): Partnerships with Petronas (3/3)

US companies provide advanced technology which includes digital twin, autonomous operations.

Key Partnerships for Petronas with Overseas and Domestic Companies

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
US & Malaysia	• SumiSaujana TCM Chemicals Sdn Bhd	 Joint venture between Sumisaujana- Malaysian oil and gas distributor TCM Chemicals-US chemicals producer 	• Commercia -lisation Agreement	• Nov 21~	 Launch the proprietary corrosion inhibitor technology for suppressing corrosion in steel pipelines to facilitate natural gas transportation from high CO₂ gas field
US	• ExxonMobil	 Oil producer and natural gas supplier 	• MoU	• Nov 21~	 Explore CCS opportunities by assessing the viability of potential CCS projects in Malaysia and identify suitable technology for potential application
US	 Baker Hughes Company 	 Technology solution provider 	• MoU	• Nov 21~	 Develop operational excellence, technological developments specifically for hydrogen, CCUS, digital solutions, and sustainability and emissions management
US	 Honeywell International 	 Engineering service and technology solution provider 	• MoU	• Mar 22~	 Develop carbon-neutral energy solutions including CCS technology, Digital Twin, and Remote Autonomous Operations
US	• Schlumberger Limited	Oilfield service provider	• MoU	• Mar 22~	 Explore opportunities in sustainability, digital and Internet of Things, R&D projects with key initiatives e.g., CCS center setup, cloud-based data repository for carbon storage, CO₂ separation technologies, etc.

Petronas partners with overseas companies mainly for the development of production plants and infrastructure and transition to clean ammonia.

Key Partnerships for Petronas with Overseas and Domestic Companies

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
Japan	• ENEOS Corporation	Petroleum company	• MoU	• Sep'21	 Hydrogen production and its transportation in methylcyclohexane (MCH) form
Japan	• JERA Co., Inc.	 Joint venture between TEPCO Fuel & Power (Electric power companies) 	• MoU	• Feb'21	 Establish supply chains for green fuels such as ammonia and hydrogen
South Korea	 Samsung C&T Corporation 	 Construction and engineering company 	• MoU	• May'22	 Building and operating hydrogen-related infrastructure
Canada/ Japan	 Inter Pipeline and Itochu 	• multinational petroleum transportation and infrastructure limited partnership and trading services	• MoU	• May'22	 Production of thousands of metric tonnes per day of blue ammonia and blue methanol
India	• Karnataka Government	 Ceremonial head to govern the Southwest Indian state of Karnataka 	• MoU	• Jul'22	 Setting up Hydrogen and Ammonia production plants in Mangaluru with an associated solar power unit

Source: Created by NRI based on news articles and company webpage of Petronas, Saura Energy, JERA

Petronas partners with domestic partners, mainly for joint development of clean hydrogen ecosystem and supply chain.

Key Partnerships for Petronas with Overseas and Domestic Companies

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
Malaysia	• Tenaga Nasional	 Multinational electricity company 	• MoU	• Augʻ22	 Producing green hydrogen fuel for power generation and stepping up efforts to jointly construct a green hydrogen ecosystem
Malaysia	• Sarawak Energy	Electric utility company	• MoU	• Nov'20	 Scaling up and venture into energy export with hydrogen as an energy carrier to meet global clean energy demand

Renewable Energy (Indonesia): Partnership with Medco Power (1/2)

Partnership for geothermal developed to enhance maintenance and operation.

Partner Country Partner Name Partner Description Partnership Type Timeline Details Consumer food • Collaborate on developing cross-border Salim Group Indonesia producer • Joint pilot project for exporting solar PV power Development • Oct'21 with expected capacity of 670 MWp and Pacificlight equivalent of 100 MW non-intermittent Agreement • Electric power generator Singapore Power Pte Ltd. electricity from Indonesia to Singapore Collaborate on developing 5 geothermal power projects with total capacity of 495 PT Pertamina • Head of Geothermal power MW with evaluating economics of a joint Indonesia Geothermal Agreement • Dec'21 business model and establishing timelines generator Energy (HoA) and milestones starting from exploration, exploitation, to operation • INPEX Oil and gas producer Japan Corporation General trader with multiple business areas ITOCHU Co-invest in Sarulla Operations Ltd to e.g., machinery, textiles, Japan Corporation • Joint jointly operate and maintenance on aerospace, energy, and • Apr'13 Sarulla geothermal power plants with total operating logistics. capacity of 330 MW located in North agreement • Kyushu Electric Sumatra, Indonesia Electric power generator Japan Power Co., Inc • Ormat Geothermal power US Technologies, generator Inc.

Key Partnerships for Medco Power with Overseas and Domestic Companies

Source: Created by NRI based on news articles and company webpage of Pertamina, Kyushu Electric, Sarulla Operations

Renewable Energy (Indonesia): Partnership with Medco Power (2/2)

Partnership for geothermal developed to enhance maintenance and operation.

Partnership Type Timeline Partner Country Partner Name Details Partner Description Collaborate on developing solar farm • Solar Joint venture projects with a capacity of 50 MW in East Philippines • Solar power generator • 2019 Philippines agreement and West Bali of Indonesia • Co-invest in the ljen geothermal project company holding license to develop a 110 • Ormat • Geothermal power Joint venture MW geothermal power project in East Java US Technologies, • July'19 of Indonesia with Ormat's commitment to generator agreement Inc. additional funding for the exploration and development

Key Partnerships for Medco Power with Overseas and Domestic Companies

Pertamina partners with overseas companies mainly for enhancing production capacity, developing supply chain, and transition to clean ammonia.

Key Partnerships for Pertamina with Overseas and Domestic Companies

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
Japan &	• Mitsubishi Corporation	Trading company	Cooperation	• 2022~	 Developed agreement to develop the Green Hydrogen and Green Ammonia Value Chain
Indonesia	 PT Pupuk Indonesia 	Fertilizer company	Agreement		and Carbon Capture Utilization and Storage (CCUS) businesses.
Japan	• TEPCO	 Power generation company 	 Joint study agreement 	• 2022~	 Signed a joint study agreement (JSA) on the development of green hydrogen and green ammonia to combine Pertamina's geothermal power generation technology and TEPCO HD's hydrogen production technology to achieve cost-competitive green hydrogen & green ammonia production and transportation
Japan	• JGC	• EPC company	• MoU	• 2022~	 conduct a joint study aiming at future commercialization and consider a wide range of joint projects in fields as hydrogen, ammonia, CCUS, and biogas.
US	• Chevron	• Energy company	• Cooperation Agreement	• 2022~	 Agreement for lower carbon hydrogen development, production, storage, and transport Also, agree on partnership for carbon offsets through nature-based solutions; carbon capture, utilization, and storage (CCUS);

Pertamina is also seeking for methods to develop hydrogen with low CO2 emission, leveraging partnership with French company.

Key Partnerships for Pertamina with Overseas and Domestic Companies

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
France	• Air Liquide	 Industrial gases and services 	 Joint study agreement 	• 2022~	 Signed a Memorandum of Understanding (MoU) with the objective to explore the technological solutions which can support the decarbonization of Pertamina's activities in Indonesia, including low-carbon hydrogen and carbon capture solutions

Philippines (Renewable Energy): Partnership with Aboitiz

Partnership includes power generation facility development and storage batteries.

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
Japan	• JERA	Power generation company	Investment	2021~	 Acquired 27% stake for Aboitiz Power
Japan	• JGC	• EPC Company	 Contract for construction of solar power generation facility 	2021~	 JGC to provide EPC services for the solar power generation facility in Bugallon, Pangasinan
Japan	• Hitachi Energy	• EPC Company	 Contract for construction of battery storage system 	2022~	 Hitachi to provide EPC service for a 20MW/20MWh battery storage system, set to go online in 2024.
China &	• Sumec Engineering	• EPC Company	 Contract for construction of solar power generation facility 	2022~	 The 2 companies to provide EPC services for the solar power generation facility Laoag and Laoag 2 solar power project
Philippines	• Hansei Corporation	• EPC / O&M Company			
USA	United States Trade and Development Agency	Government agency	 Grant for feasibility study 	2022~	 Provides grant to identify potential project sites and provide technical and economic analysis for 3GW of wind turbine generation projects

Key Partnerships for Aboitiz with Overseas and Domestic Companies

Source: Created by NRI based on company webpage of Aboitiz Power and news articles

Philippines (Renewable Energy): Partnership with Meralco (1/4)

Meralco partners with domestic players to enhance the supply capacity for RE.

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
Philippines	 Island Wind Energy Corporation 	Wind energy producer	 Power supply agreement 	• 2018	 Collaborate on supply of a 150-MW wind energy for Meralco from the project based in Rizal, Philippines
Philippines	 First Gen Hydro Power Corporation 	Power generator	• Power supply agreement	• Sep'19	 Collaborate on supply of a 100-MW energy for Meralco from geothermal power plants
Philippines	 Energy Development Corporation 	Power generator			
Philippines	 Power Sector Assets and Liabilities Management Corporation 	 State-owned financial service provider 	 Power supply agreement 	• Ocť21	 Collaborate on supply of a 90-MW energy for Meralco from Unified Leyte Geothermal Power Plant under the emergency procurement up to July'22

Key Partnerships for Meralco with Overseas and Domestic Companies

Philippines (Renewable Energy): Partnership with Meralco (2/4)

JP players support with both construction and operation of power plants.

Key Partnerships for Meralco with Overseas and Domestic Companies

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
Japan	 Marubeni Corporation 	 General trader and construction service provider 	 Joint venture agreement 	• Apr'19	 Establish Special purpose company for the financing, design, engineering, establishment, construction, development, operation and maintenance of electric power distribution system for New Clark City, Philippines
Japan	• Kansai Electric Power Co.	• Power distributor			
Japan	• Chubu Electric Power Co.	• Power distributor			
Philippines	 Bases Conversion and Development Authority 	 State-owned infrastructure developer 			
Japan	• Idemitsu Kosan	 Oil and chemicals producer 	 Joint development agreement 	• 2020	 Develop a business model for PowerSource First Bulacan Solar e.g., hybrid power plants combined with batteries and power generation stations for self-consumption at buildings' rooftop
Japan	• Mitsui & Co.	 General trader, logistics and financing services provider 	• Joint venture agreement	• Jun'21	 Establish PH Renewables Inc. for operation of a 75 MWac solar power plant in Rizal, Philippines

Source: Created by NRI based on news articles, company webpage of Idemitsu

Philippines (Renewable Energy): Partnership with Meralco (3/4)

JP players support with both construction and operation of power plants.

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
Japan	• Mitsubishi Motors	• Car producer	 Cooperation agreement 	• Jul'19	 Conduct the joint study on vehicle-to-grid (V2G) technology application in Philippine for allowing EV to charge and supply electricity to a building
Japan	• Ajinomoto	 Food and seasonings producer 	 Service agreement 	• Feb'22	 Collaborate on rooftop solar PV panels installation by Meralco in the plant in Bulacan, Philippines
Korea	 Seochang Electric Communication 	 Energy system solution provider 	 Research and Development 	• Jun'22	 Establish an on-grid hybrid power service with a 50-KW peak solar PV system and a 300-KW-hour energy storage system (ESS) in Cavite, Philippines
Singapore	• Vena Energy	Power generator	 Joint venture agreement 	• Feb'22	 Establish Nuevo Solar Energy Corp. for the joint development, construction and operation of a 68 MWac solar power plant in Ilocos Norte, Philippines

Key Partnerships for Meralco with Overseas and Domestic Companies

Philippines (Renewable Energy): Partnership with Meralco (4/4)

US players provide support on advanced technologies including smart grid tech.

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
US	 General Electric Company (GE) 	 Technology and financial services provider 	 Cooperation agreement 	• Oct'12	 Support on the electric meters and system integration services in the electric distribution network for the utility's data management and analysis requirements
US	• Trilliant	 Smart grid systems service provider 	 Cooperation agreement 	• 2013	 Support on Smart Grid Communications Platform by integrating the advanced intelligence into the prepaid metering system for consumers' real-time data, and power supply's quality and reliability
US	• City of dreams	 Casino and resort operator 	 Memoran- dum of agreement 	• Jul'19	 Collaborate on rooftop solar PV panels installation by Meralco in the resort
US	• Amber Kinetics	• Energy storage provider	 Cooperation agreement 	• Nov'21	 Implement the testing of long-duration flywheel energy storage system with 4- hour discharge duration, non-degradation in performance, long lifespan, and the clocking in at a 30-year design life

Key Partnerships for Meralco with Overseas and Domestic Companies

Smart City (Philippines): Partnership with Ayala Land (1/3)

Wide range of partnership observed, primarily for infrastructure development.

Key Partnerships for Ayala with Overseas and Domestic Companies

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
Philippines	BPI Card Finance Corporation	• Financial service provider	• Cooperation agreement	• Dec'13	• Collaborate on modernizing transport systems for the Light Rail Transit (LRT) and Metro Rail Transit (MRT) lines in Metro Manila by financing, designing, constructing, the implementation and operation of a contactless automatic fare collection system (AFCS) based on smart card technology
Hong Kong	• First Pacific	 Investment holding company 			
Philippines	• Globe Telecom Inc.	Telecommunication service provider			
Philippines	 Meralco Financial Services 	 Marketing and advertising services provider 			
Singapore	• MSI Global	 Land transport solution provider 			
Philippines	 Smart communication Inc. 	 Wireless communication, digital services provider 			
Singapore	• SMRT Corporation	Public transport operator			
Philippines	• SM Prime Holdings	Real estate developer	• Joint master plan	• Jul'15	 Develop a portion of the South Road Properties (SRP) in Cebu City spanning the 26 hectares for traditional office, business- process outsourcing office, shopping-center leasing and residential condominiums

Smart City (Philippines): Partnership with Ayala Land (2/3)

Data center projects are one of focus areas, partnering with Singapore companies.

Key Partnerships for Ayala wi	th Overseas and Domestic Companies
-------------------------------	------------------------------------

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
US	 Global Electric Transport LLC 	 Electric transport solution provider 	• Cooperation agreement	• Dec'21	 Collaborate on Integrated EV charging system installation at Ayala Malls and providing electric shuttle buses called COMETs in Davao and Manila City with intent to expand the network of electric shuttle, EV charger nationwide
Philippines	• GREENSTRuM	Electric vehicle (EV) charger provider			
Philippines	 Integrated Micro- Electronics Inc. 	Electronic devices provider			
China	• TGOOD LINCHR	 EV charging infrastructure service provider 			
Philippines	• Globe Telecom Inc.	Telecommunication service provider	• Joint venture agreement	• Mar'22	 Co-invest in KarmanEdge, Inc. for the development, construction and operation of data centre projects up to 100MW capacity to expand a digital ecosystem in the country
Singapore	 ST Telemedia Global Data Centre 	• Data centre provider			
Smart City (Philippines): Partnership with Ayala Land (3/3)

Energy saving is also a focus area, in which Japanese trading companies support.

Partner Country Partner Name Partnership Type Timeline Details Partner Description Co-invest in Philippine Integrated Energy General trader with Solutions Inc. to implement "district multiple business areas Mitsubishi Joint venture cooling systems" for energy-saving in e.g., Petroleum and gas, • Nov'11 Japan Ayala Land's mixed-use developments in Corporation agreement Chemicals, Metals, Makati, Mintinlupa, Cebu, Davao, Cagayan Materials, Food etc. de Oro and Quezon City Investment holding Hong Kong • First Pacific Collaborate on operation and company maintenance of the 20.7-kilometer LRT1 Consortium • Sep'15 line in Metro Manila stretching from the agreement Muñoz station in Quezon City to the • Oil and gas distributor, Macquarie Baclaran station in Pasay City US Infrastructure air transportation, airport services provider Holdings · Engineering and Provide renewable energy supply and construction services third-generation domestic solar-powered • Power supply Acciona SA provider for • Jan'22 Spain systems to 100 households in El Nido, agreement infrastructure, Palawan City renewable energy • Develop and operate carrier-neutral data • Digital infrastructure centres to support increase in data Framework • May'22 US • Flow Holdings solution provider consumption, digitization, 5G connectivity, agreement and data localization trends in the country

Key Partnerships for Ayala with Overseas and Domestic Companies

Renewable Energy (Laos) – Partnerships with Electricite du Laos (1/2)

Enhancement of transmission system an issue, which Chinese companies are the primary partners.

Key Partnerships for Electricite du Laos with Overseas and Domestic Companies

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
Japan	 Tokyo Electric Power Company Holdings 	 Power generation, transmission, and distribution company 	Agreement	• 2021	 Support on power grid operation in Lao PDR through knowledge sharing on power utility management from 2021-2024
China	 China Southern Power Grid 	 Power transmission and distribution company 	• Joint venture	• 2020	 Established Electricite du Laos Transmission Company Ltd., a joint venture entity, which has control of Lao PDR's power grid and the rights to purchase and sell power in Lao PDR, including power from renewable energy In 2021, Electricite du Laos Transmission Company has 25 years concession agreement (Build-Operate-Transfer) with Lao PDR government to invest, construct, and operate power grids (≥230 kV), and implement grid interconnection projects between Lao PDR and neighboring countries
Singapore	Keppel Electric	Power generation company	 Power purchase agreement 	• 2021	 Import up to 100MW of renewable hydropower from Lao PDR to Singapore via Thailand and Malaysia using existing interconnectors under an import trial
Thailand	 Electricity Generating Authority of Thailand 	 Power generation and transmission company 	 Memorandum of Understanding 	• 2019	 Establish Xayaburi hydropower plant in Lao PDR to supply electricity to Thailand

Renewable Energy (Laos) – Partnerships with Electricite du Laos (2/2)

EDL also conducts partnership to enhance the export of electricity to neighboring countries.

Key Partnerships for Electricite du Laos with Overseas and Domestic Companies

Partner Country	Partner Name	Partner Description	Partnership Type	Timeline	Details
Thailand	• B.Grimm Power Plc	 Conglomerate in healthcare, energy, building and industrial systems, real estate, e- commerce, and transport industry 	 Memorandum of Understanding 	• 2022	 Sign MoU with EDL-Gen, part of Electricite du Laos, to jointly explore the feasibility of developing hydropower, wind power, solar energy, transmission systems and power trading in domestic and overseas markets
Thailand	 Electricity Generating Public Company Limited 	Power generation company	 Power purchase agreement 	• 2022	 Establish Nam Theun 1 hydropower plant in Bolikhamxay province, Lao PDR. It has power purchase agreements with EGAT of Thailand and Electricite Du Laos for 27 years
Cambodia	 Electricity authority of Cambodia 	 Power transmission and distribution company 	 Power purchase agreement 	• 2020	 Cambodia will purchase 500 MW from hydro power and 2,400 MW from coal-fired power project throughout 2020-2027
Lao PDR	 Lao Telecommunication 	• Telecommunication company	 Memorandum of Cooperation 	• 2022	 Agrees to connect electricity bills payment system with M-Money Mobile Wallet service and conduct feasibility of transportation projects such as creating an electric vehicle charging station
Vietnam	• N/A	• N/A	• N/A	• 2022	 Électricité du Laos is working on connecting the Laotian power grid with 27 connection points of Vietnam's grid

事業モデルの整理

Hydrogen / Ammonia (Malaysia) - Issues and Needs of Local Players

Key area can be categorized under production, transportation, and utilization, in which issues and needs of local players is the following.

Overview of Hydrogen / Ammonia Supply Chain

Key Issues and Needs of Local Players

Source: Created by NRI based on interviews

Hydrogen / Ammonia (Malaysia) - Example of Business Model (Green Hydrogen Export)

Providing technology to support production and transportation will provide business opportunities for Japanese companies.

Local Company's Needs

- Malaysia aims to become a major exporter of ammonia / hydrogen, in which one of the drivers is expected to be the implementation of carbon tax and carbon credit in overseas countries (e.g. Japan, South Korea)
- To increase the amount of ammonia / hydrogen which can be exported overseas, local energy companies are aiming to receive technology which will enable efficient conversion from renewable energy to ammonia / hydrogen, as well as the technology for the transportation

Resource of Japanese Companies

- Electrolyzer manufacturer:
 - Provide electrolyzer for local energy companies, which enables the production of green hydrogen in a stable manner
- Hydrogen transportation company:
 - Provides energy carrier for safe and stable transportation
- Trading companies, energy companies
 - Support the development of overall supply chain from Malaysia to overseas companies as the business developer

Business Model (Domestic Production and Export of Green Hydrogen)

Hydrogen / Ammonia (Indonesia) - Issues and Needs of Local Players

Key area can be categorized under production, transportation, and utilization, in which issues and needs of local players is the following.

Overview of Hydrogen / Ammonia Supply Chain

Description Item • Low stability due to fluctuation of renewable energy (Green ammonia / hydrogen) Production High cost due to fluctuation of renewable energy (green ammonia / hydrogen) Requires large amount of energy for Harber Bosh process (ammonia) Lack of specialized transportation vessels (ammonia / hydrogen) • Requires large amount of energy for conversion Transportation from ammonia to hydrogen Development of technology for safe storage (ammonia / hydrogen) Increasing the amount which can be used for co firing (ammonia / hydrogen) Improving the performance when using Utilization hydrogen for gas turbines Reducing the Nox from emission (ammonia) • Need to develop infrastructure for industrial (e.g. steel) and FCV usage

Source: Created by NRI based on interviews

Hydrogen / Ammonia (Indonesia) - Example of Business Model (Electrolyzer & Co-fire Power Generation)

Providing technology to support production and utilization of green hydrogen / ammonia will provide business opportunities for Japanese companies.

Local Company's Needs

- Indonesian energy companies aim to increase the supply of ammonia and hydrogen, to utilize the resources for CO2 reduction within the country
- For the supply of hydrogen and ammonia, one of the key requirements is technology to produce green hydrogen efficiently
- For the demand-side, technology to increase the amount of ammonia for co-fire power plants is required from overseas companies

Resource of Japanese Companies

- Electrolyzer manufacturer:
 - Provide electrolyzer for local energy companies, which enables the production of green hydrogen in a stable manner
- Heavy industry company
 - Provide the facility for ammonia co-fire power plant generation
- Trading companies, energy companies
 - Support the development of overall supply chain within Indonesia as the business developer

Business Model (Domestic Production and Domestic Utilization of Green Hydrogen / Ammonia)

CCS/CCUS (Malaysia) - Issues and Needs of Local Players For CCS/CCUS in Malaysia, issues and needs of local players are the following.

Overview of CCS / CCUS Supply Chain

ltem	Description
Carbon Capture	 Large amount of energy required during CO2 capture High CO2 capture cost
Transportation	 Economic efficiency of the vessels low GHG emission during transportation
Storage	 Safety and security of storage sites
Utilization	Cost reduction for carbon recycleAdding value to the product manufactured

CCS/CCUS (Malaysia) - Example of Business Model (Carbon Capture)

Providing CO2 capture in an energy and cost efficient manner to gas reservoirs, industries, and power generation will provide opportunities for JP companies.

Local Company's Needs

- Malaysia aims to become a regional hub for CO2 storage in Asia, to function as a storage for both domestic and international CO2 sources
- For domestic CO2 sources, local companies require technology to capture carbon, in a cost and energy efficient manner
- Local companies are looking for partnership with overseas companies which has the above technology

Resource of Japanese Companies

- EPC company:
 - Provide carbon capture facility to the local companies
- Chemical company
 - Provide carbon capture materials to the local CO2 source company, which enables CO2 capture in an energy and cost efficient manner
- Trading companies, energy companies
 - Support the development of overall supply chain within Malaysia

Business Model (Carbon Capture Facility / Material)

Issues and Needs of Local Players: CCS/CCUS - Thailand

Key area can be categorized under carbon capture, transportation, storage / utilization, in which issues and needs of local players is the following.

Source: Created by NRI based on interviews

CCS/CCUS (Thailand) - Example of Business Model (Carbon Capture)

Providing CO2 capture in an energy and cost efficient manner to industries and power generation companies will provide opportunities for JP companies.

Local Company's Needs

- In Thailand, local energy companies and industry players are aiming to leverage CCS/CCUS across various industries, including fossil fuel power generation and industrial process (e.g. cement, chemicals)
- Within the supply chain, local companies require technology to capture carbon, in a cost and energy efficient manner
- Local companies are looking for partnership with overseas companies which has the above technology

Business Model (Carbon Capture Facility / Material)

Resource of Japanese Companies

- EPC company:
 - Provide carbon capture facility to the local companies
- Chemical company
 - Provide carbon capture materials to the local CO2 source company, which enables CO2 capture in an energy and cost efficient manner
- Trading companies, energy companies
 - Support the development of overall supply chain within Thailand

Renewable Energy (Indonesia) - Issues and Needs of Local Players For renewable energy in Indonesia, issues and needs of local players are the following.

	ltem	Description		
	Geothermal	• High investment cost for exploration drilling		
Power	Solar	 High cost of energy storage Solar module technology of local company is low (Needs to have 40% local products) 		
Generation	Waste Management	 Lack of know how for waste management regarding the renewable energy equipment 		
	Hydro	Instability due to seasonality		
Distribution / Transmission		 Electricity loss during distribution/transmission Instability for grid, especially for low voltage 		
Retail		 Development of new technology to utilize excess energy 		

Renewable Energy (Indonesia) - Example of Business Model (Geothermal)

Solutions with technology to manage the power generation of renewable energy efficiently can develop opportunities for Japanese solution providers.

Local Company's Needs

- In Indonesia, power generation companies are aiming to increase the renewable energy power generation, for areas such as geothermal and solar power generation
- For geothermal power generation, one of the key issues is the stability, such as technology to control the amount of steam

Resource of Japanese Companies

- Electric manufacturer: Provide technology which supports with the control of steam for geothermal power generation
- Trading company: Invest in the power generation with local player, and support with the introduction of the Japanese solution provider

Business Model (Geothermal Power Generation)

Issues and Needs of Local Players: Renewable Energy - Philippines For renewable energy in Philippines, issues and needs of local players are the following.

	Item	Description	
	Geothermal	High initial investment for drillingDifficult to control the steam	
	Wind	 Data collection for identification of suitable land is too expensive Instability due to seasonality 	
Power Generation	Solar	High cost of energy storage	
	Biomass	 Difficult to secure materials sufficiently 	
	Hydro	 Instability due to seasonality 	
Distribution / Transmission		 Instability / electricity loss during distribution/transmission Insufficient capacity for distribution / transmission: 	

Renewable Energy (Philippines) - Example of Business Model (Wind Power)

Solutions with technology to manage the power generation of renewable energy efficiently can develop opportunities for Japanese solution providers.

Local Company's Needs

- In the Philippines, power generation companies are aiming to increase renewable energy power generation such as solar power and wind power generation
- For wind power generation, one of the key issues is identifying the amount of wind available for power generation within specific areas

Resource of Japanese Companies

- Electric manufacturer: Provide technology which supports with the identification in terms of the amount of wind available
- Trading company: Invest in the power generation with local player, and support with the introduction of the Japanese solution provider

Source: Created by NRI based on interviews and publicly available sources

Business Model (Wind Power Generation)

Renewable Energy (Vietnam) - Issues and Needs of Local Players For renewable energy in Vietnam, issues and needs of local players are the following.

	Item	Description	
Power Generation	Solar	Lack of storage systems	
	Hydro	Technology for pumped storage hydropower system	
	Wind	Limitation on land availability for the project development	
	Waste	 Insufficient supply of waste 	
Distribution / Transmission		 Increasing the capacity of transmission line Interconnection with the nation's grid line: 	
Retail		 Availability of technology for the utilization of excess electricity generated from the renewable energy 	

Renewable Energy (Vietnam) - Example of Business Model (Electrolyzer)

Solutions with technology to utilize the excess renewable energy efficiently will provide opportunities for Japanese companies.

Local Company's Needs

- In Vietnam, renewable energy is aimed to be further implemented, in which availability of technology for the utilization of excess electricity generated from renewable energy is lacking
- Power generation companies are looking into technology which supports with the above, including technology which converts excess solar and wind power into green hydrogen

Resource of Japanese Companies

• Electrolyzer manufacturer: Provide electrolyzer which enables the conversion from renewable energy to green hydrogen

Business Model (Electrolyzer to Utilize Excess Electricity Effectively)

Issues and Needs of Local Players: Renewable Energy - Laos

For renewable energy in Laos, issues and needs of local players are the following.

	Item	Description	
	Geothermal	 Lack of understanding on feasibility and supply capacity 	
Power	Solar	 Instability based on lack of storage systems, given the high price of battery storage 	
Generation	Biomass	 Instability based on fluctuation of raw material availability 	
	Hydro	 Instability based on seasonality Difficult to regulate, as hydro is mostly run of river 	
Distribution / Transmission		Energy loss during transmissionLimited volume for transmission	
Retail		 Can't fully utilize excess electricity as difficult to anticipate surplus energy Development of new technology to utilize excess energy 	

Renewable Energy (Laos) - Example of Business Model (Electrolyzer)

Solutions with technology to utilize the excess renewable energy efficiently will provide opportunities for Japanese companies.

Local Company's Needs

- In Laos, the country has a large amount of renewable energy power generation capacity, in which availability of technology for the utilization of excess electricity generated from renewable energy is lacking
- Power generation companies are looking into technology which supports with the above, including technology which converts excess hydro power generation into green hydrogen

Resource of Japanese Companies

• Electrolyzer manufacturer: Provide electrolyzer which enables the conversion from renewable energy to green hydrogen

Source: Created by NRI based on interviews and publicly available sources

NRI 91

Smart City (Philippines) - Issues and Needs of Local Players Key issues and needs by local players in the Philippines is the following.

Example of Key Areas for Smart City in ASEAN		Key Issues and Needs of Local Players in the Philippines		
Civic & Social	Inclusive & Equitable Growth	ltem	Description	
Health & Well-being	Housing & Home	Security	Lack of natural disaster management systemLack of responsive and automated security system	
Security	Personal Safety & Security			
Quality Environment	Water, Waste & Sanitation	Mobility	 Lack of connected transportation system System which supports with the visualization of traffic (e.g. GIS enabled system for identifying parking lots) 	
	• Mobility			
Built Infrastructure	• Urban Resilience	Housing & Home	 Lack of connectivity for smart grid technology Limited area and lack of safety monitoring system for large size battery for city supply Difficult for individuals to install solar panel at the households High initial investment for energy management in and IoT conversion 	
Industry & Innovation	• Education			

Source: Created by NRI based on ASEAN Secretariat and interviews

Smart City (Philippines) - Example of Business Model (Mobility)

Providing solutions which supports with transportation issues may support the business development of Japanese companies.

Local Company's Needs

- In the Philippines, smart city development is currently conducted by key players including real estate developers, in which key issues which need to be resolved are security, mobility, and energy efficiency
- Major players are aiming to develop smart solutions, which enables not only the wellbeing of the citizens but also to address issues regarding green and carbon neutrality

Resource of Japanese Companies

- Data analysis company:
 - Collects and analyzes the traffic data from local data company
- Data visualization company:
 - Utilizes the data and provides data visualization service for the residents (e.g. Provide suggestion on how to avoid the traffic congestion)

Business Model (Mobility Service for Smart Cities)

Japanese Company with Technology → Products, Goods, Service - > Money → Action ← Partnership Local real estate Description Item company Government (Smart City Developer) Partnership for Visualization services which supports resolving Product of masterplan Partnership traffic congestion issues JP Company development Subsidy (e.g. GIS system which visualizes the amount of road with Fee Technology traffic) JP data visualization Local Smart City Developer company Traffic data visualization Data Target Smart Service service Fee Local smart city developer analysis Customer services Fee results JP data analysis Resident / Local company NEDO company Support with Traffic Mobility solution provider Partner demonstration Fee Data Local data company

Green Building (Thailand) - Issues and Needs of Local Players

Key areas for green building solutions include energy and green materials, in which issues and needs of local players are the following.

Overview of Green Building Solutions Energy Saving Reduction of Energy **Energy Management** Energy **Renewable Energy** Reduce CO2 per unit Alternative Clean Energy (e.g. Hydrogen) Green Materials Reduced CO2 materials

Item	Description
Energy Management	 Lack of IoT equipped equipment Limited choice of energy management systems (e.g. usage of AI for analysis) Energy control and management is not centralized
Renewable Energy	 Battery storage too expensive to install for solar power generation Wind turbine too expensive to install
Green Materials	• Limited amount of certified green materials

Green Building (Thailand) - Example of Business Model (Energy Management)

Providing solutions which supports with energy saving / energy management may support the business development of Japanese companies.

Local Company's Needs

- In Thailand, many major real estate developers have set targets for the environment including GHG reduction and carbon neutrality
- To achieve the target, current technology is not sufficient, and hence local developers are looking into technology providers for GHG reduction
- Within the areas, energy saving and energy management are one of the core areas for the local company's needs

Resource of Japanese Companies

• Company which provides energy saving (e.g. air conditioners) and energy management products

NRI 95

