COっ有効利用コンクリートの研究開発

中国電力株式会社 鹿島建設株式会社 三菱商事株式会社

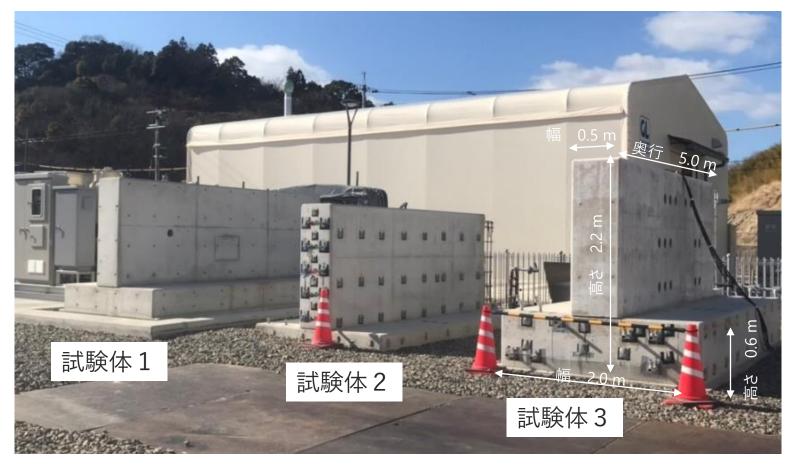
実用化済

開発目標

今回の研究目標

●大量のカーボンリサイクルを実現するため、CO₂有効利用コンクリートの適用範囲の拡大を目指す。

カーボンリサイクル(CR)実証研究拠点

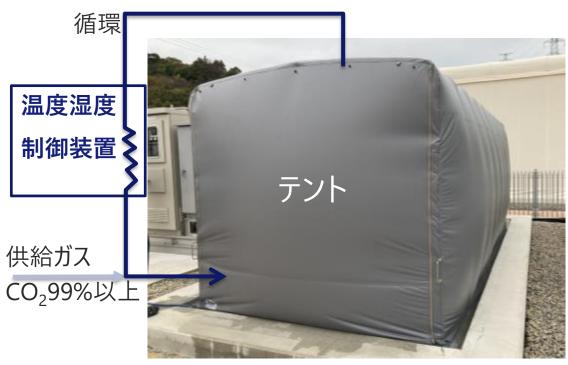

●CR研究拠点では、隣接する石炭ガス化複合発電所(IGCC)からの分離回収CO₂を用いた技術開発が可能である。

●当該拠点において、CO2有効利用コンクリートの屋外大型試験など、本研究を実施した。

※1国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO) 分離·回収CO。 藻類研究エリス 2022 年度終了 カーボンリサイクル実証研究拠点(大崎上島) CO。有効利用コンクリートの研究開発 出典: NEDO「カーボンリサイクル実証研究拠点 | HPより

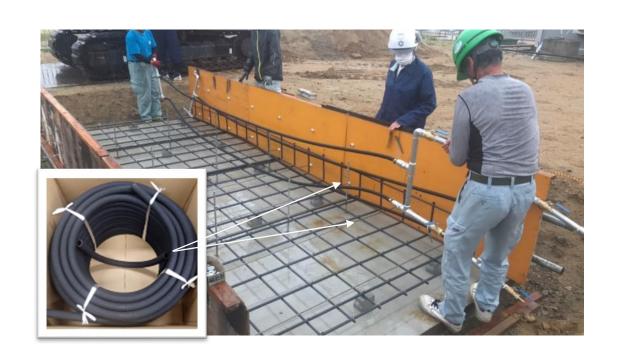
屋外大型試験の概要

- ●CO₂を固定させた現場打設コンクリートの大型試験体を3体製作した。
- ●CO₂を固定する方法として、3つの手法を検討・実施した。


<製作した大型試験体(3体)>

CO。固定手法1(封緘装置式)

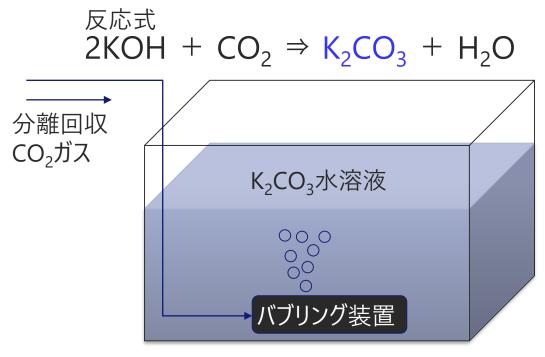
●試験体の脱枠後に、密閉空間(テント)内にコンクリートを設置し、コンクリートの外から 炭酸化する手法。このとき、制御装置により、最適な炭酸化養生環境(50°C、40%)を 維持する。


<炭酸化養生前>

<炭酸化養生中>

CO。固定手法2(埋込パイプ式)

- ●脱型後、埋め込んだパイプ内にCO₂を供給し、コンクリートを中から炭酸化する手法。
- ●型枠・鉄筋組立時に、CO2透過パイプ(多孔質)を設置しておく。



<炭酸化養生中(中から)>

<パイプ設置作業>

CO。固定手法3(炭酸アルカリ水式)

- ●コンクリートの練混ぜ水にCO₂を溶解させる手法。
- ●通常の水では、 CO_2 の溶解度が低いため、水酸化カリウムを混和して、 CO_2 溶解水(K_2CO_3 水溶液)を製造した。

炭酸カリウム水溶液 製造概要図

コンクリートの材料 (練混ぜ水) として使用

封緘装置式

実験概要(封緘装置式)

- ●配合について、セメントの一部を高炉スラグ微粉末(BFS)、特殊混和材(γ)で置換。 γはCO₂と反応して硬化する性質を持つ。
- ●試験では、炭酸化深さ、強度、CO₂固定量を評価した。

設計基準強度 24N/mm²

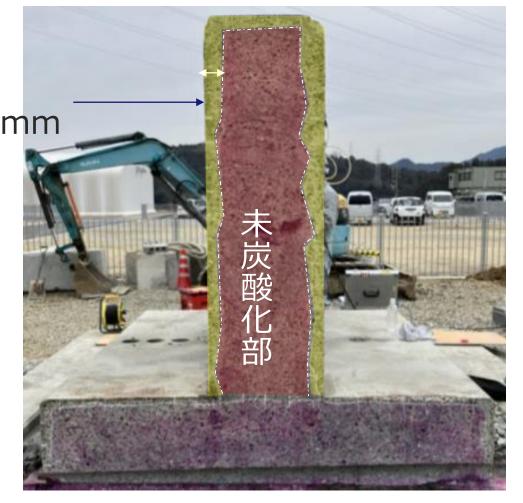
目標CO₂固定量 30kg-CO₂/m³

配合表

\///D	c/o			単位	位量(kg/m³)				
W/P (%)	s/a (%)	W 水道水	OPC 普通ポルト	BFS 高炉粉末			G 粗骨材	Ad 混和剤	
55.0	49.4	169	123	169	15	872	940	2.5	

試験項目

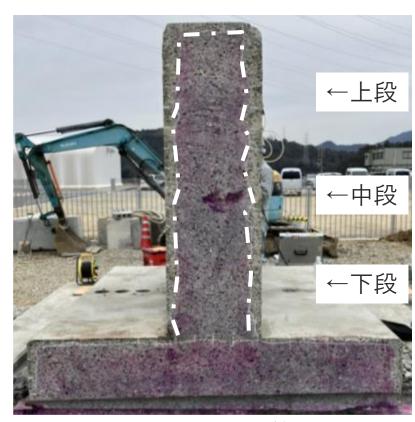
項目	養生	摘要	
炭酸化深さ	・炭酸化(26日※)	切断面に1%フェノールフタレイン噴霧	
圧縮強度	・濃度99%以上のCO ₂ 供給	Φ100mmコアにて確認	
CO ₂ 固定量		全炭素量を測定	


※ 材齢1日で脱型し、炭酸化を開始してからの日数

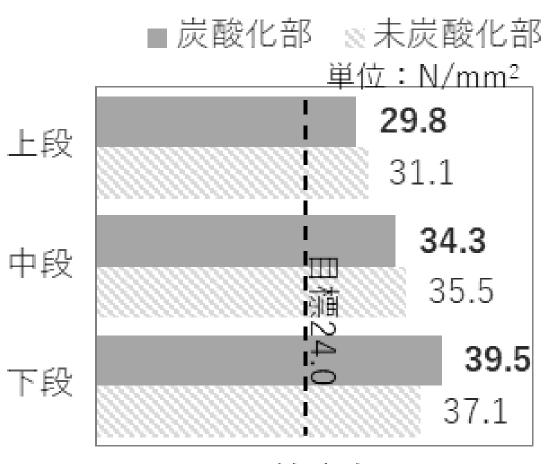
炭酸化深さ

●壁部の炭酸化深さは35~78mm、平均51mmであった。左右面で炭酸化深さに、ほとんど偏りはなかった。

炭酸化部 深さ(幅)51mm



<切断面の炭酸化範囲>



圧縮強度

●コア採取位置により強度の違いが見られたが、目標強度24N/mm²を満足した。

<切断面の炭酸化範囲>

圧縮強度 σ69

CO。固定量

- ●目標量30kg-CO₂/m³以上のCO₂を固定することに成功した。
 - ✓元々材料に含まれるCO₂量を除して、固定量を評価した。

[全体のCO₂固定量] = ([CO₂含有量] - [使用材料CO₂含有量]) × [面積率]

<CO₂固定量分析結果>

部位	単位	炭酸化部	未炭酸化部	
CO ₂ 含有量 (全炭素量より)	kg/m³	107.0	14.4	
使用材料に 含まれるCO ₂ 量	kg/m³	2.5		
CO ₂ 固定量	kg/m³	104.5	11.9	
面積率	%	23	77	
全体での CO ₂ 固定量	kg/m³	33	3.2	

<切断面の炭酸化範囲>

埋込パイプ式

実験概要 (埋込パイプ式)

- ●封緘装置式と同配合とした。
- ●試験では、炭酸化深さ、強度、CO₂固定量を評価した。

設計基準強度 24N/mm²

目標CO₂固定量 30kg-CO₂/m³

配合表

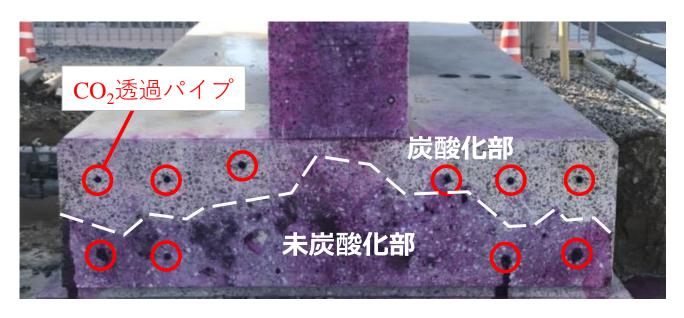
\//D	6/2			単位	立量(kg/m	3)		
W/P (%)	s/a (%)	W 水道水	OPC 普通ポルト	BFS 高炉粉末	γ 特殊混和材	S 細骨材	G 粗骨材	Ad 混和剤
55.0	49.4	169	123	169	15	872	940	2.5

[※] 封緘装置式と同配合。

試験項目

項目	養生	摘要
炭酸化深さ	・炭酸化(31日※)	切断面に1%フェノールフタレイン噴霧
推定圧縮強度	・濃度99%以上のCO ₂ 供給	リバウンドハンマーにて測定
CO ₂ 固定量		全炭素量を測定

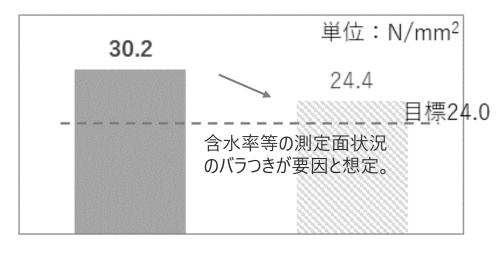
※ 材齢1日で脱型し、炭酸化を開始してからの日数



炭酸化深さ、推定圧縮強度

- ●10本のパイプにより炭酸化した結果、コンクリートの上部は炭酸化、下部は未炭酸化。
- ●材齢138日時点で、炭酸化部の推定圧縮強度は目標24N/mm²を満足した。

炭酸化深さ

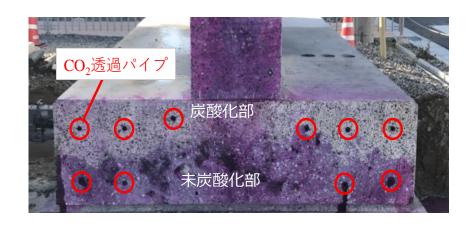

フェノールフタレイン1%溶液噴霧。

<切断面の炭酸化範囲>

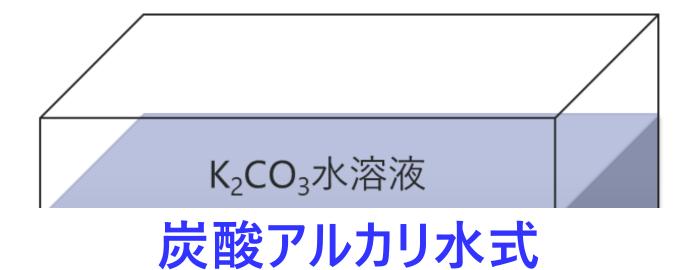
推定圧縮強度

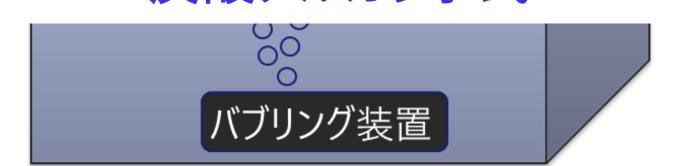
リバウンドハンマーにより計測。

炭酸化部 σ138 未炭酸化部 σ187


<切断面の推定圧縮強度>

CO2固定量


- ●目標量30kg-CO₂/m³以上のCO₂を固定した。
- ✓元々材料に含まれるCO₂量を除して、固定量を評価した。[全体でのCO₂固定量] = ([CO₂含有量] [使用材料CO₂含有量]) × [面積率]


<CO2固定量分析結果>

部位	単位	炭酸 化部	未炭酸化部	
CO ₂ 含有量 (全炭素量より)	kg/m³	74.0	13.0	
使用材料に 含まれるCO ₂ 量	kg/m³	2.5		
CO ₂ 固定量	kg/m³	71.5	10.5	
面積率	%	43.2	56.8	
全体での CO ₂ 固定量	kg/m³	36.9	(>30)	

<切断面の炭酸化範囲>

実験概要 (炭酸アルカリ水式)

- ●配合は基本的に他固定手法と同様であるが、追加的に炭酸カリウム分96kg/m³(含有CO₂量30kg/m³)を添加した。
- ●設計基準強度は一般的な土木構造物を参考に24N/mm²で設定した。
- ●試験では、炭酸化深さ、強度、CO₂固定量を評価した。

配合表

W/P	c/2				単位量(kg/m³)				
(%)	(%)	W	OPC	BFS	γ	S	G	K	
(70)	(70)	(水道水)	(普通ポルト)	(高炉粉末)	(特殊混和材)	(細骨材)	(粗骨材)	(炭酸カリウム)	
55.0	49.4	169	123	169	15	872	940	96	

試験項目

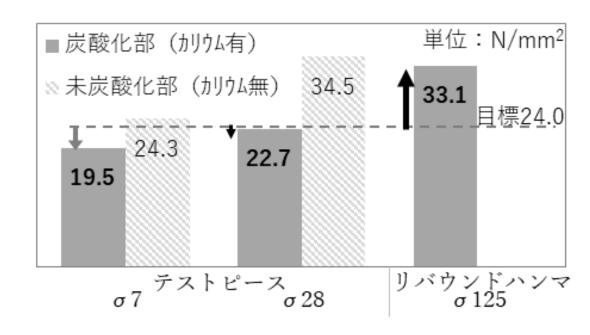
AE減水剤、AE剤、増粘剤を添加

項目	養生	摘要
炭酸化深さ	・分離回収した濃度99%以上のCOっをバブリング	フェノールフタレイン1%噴霧
圧縮強度	(2日間)	テストピースΦ100mmとリバウンドハンマで確認
CO ₂ 固定量	・打設後、材齢7日で脱枠	全炭素量を測定

目標CO。固定量

 $30 \text{kg-CO}_2/\text{m}^3$

炭酸化深さ、推定圧縮強度

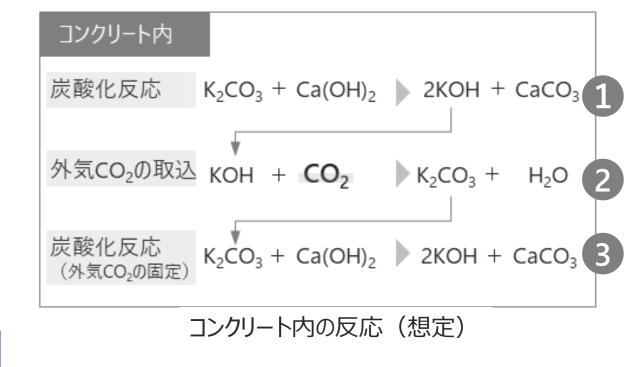

- ●断面全体で、アルカリ性が保持されていた。
- ●炭酸化カリウムを添加した場合、28日材齢時点では目標強度に達しなかったが、長期での強度では、目標強度を満足した。

炭酸化深さ

試験体の切断面 (フェノールフタレイン1%溶液噴霧後)

推定圧縮強度

強度試験の測定結果



CO₂固定量

- ●K₂CO₃として投入したCO₂量(30kg/cm³)の2倍以上のCO₂を固定した。
- ●これは、式①の炭酸化反応により生成したKOHが、②外気のCO₂を取込、③CO2を固定した結果と想定される

COっ含有量の測定結果

部位	単位	炭酸化部	未炭酸化部	
CO ₂ 含有量 (全炭素量より)	kg/m³	78.3	_	
使用材料に 含まれるCO ₂ 量	kg/m³	2.5		
CO ₂ 固定量	kg/m³	75.8	_	
面積率	%	100	0	
全体での CO ₂ 固定量	kg/m³	75.8	(>30)	

- ●新たなCO₂固定方法として、3つの手法を開発。
- ●石炭ガス化複合発電所(IGCC)から分離回収したCO₂をコンクリートに固定した(CR研究拠点の特色)。
- ●3手法ともに、目標量30kg-CO₂/m³以上のCO₂固定を達成。
- ●3手法ともに、長期強度において、目標強度24N/mm²以上を達成。
- ●コスト面等課題が残るものの、現場打設コンクリートへの適用可能性有。

この成果は、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託業務(JPNP16002)の結果得られたものです。