NEDO燃料電池・水素技術開発ロードマップ中間報告会

NEDO 燃料電池・水素技術開発ロードマップ (FCV・HDV 用燃料電池技術開発) FCスタック

1/20

プレゼンター:竹内仙光(FC-Cubic)、陣内亮典(豊田中央研究所)、柿沼克良(山梨大学)、 川上 浩良(東京都立大学)、井上 元(九州大学)、今井英人(FC-Cubic)、塚本貴志(みずほR&T)

> NEDO スマートコミュニティ・エネルギーシステム部 燃料電池・水素室 (委託先)みずほリサーチ&テクノロジーズ

- 1. FCアカデミアWG 体制・実施内容
- 2. ロードマップおよび解説書の主な追加・変更箇所

資料構成

- 3.2035年頃の材料物性目標の検討
- 4. FC材料開発の方向性(PFAS規制)
- 5. 2035年頃に向けた材料開発
 - ① 電極触媒
 - ② 電解質材料
 - ③ ガス拡散電極
 - **④** MEA
- 6. 評価·解析技術

1. FCアカデミアWG 体制

1. FCアカデミアWG 実施内容

- ①2035年目標・制約を踏まえたFCの目標検討とアクションプランへ反映
- ②材料開発・解析技術開発ニーズの落とし込み
- ③2040年シナリオの不足分の整理(次年度実施予定)
- ④2040年シナリオのブラッシュアップとアクションプランの検討(次年度実施予定)
- ⑤上記を踏まえたロードマップ・解説書の更新・改訂

2. ロードマップの主な追加・変更箇所

FCV · HDV用燃料電池技術開発ロードマップ(FCスタック) 2040年頃 現在 2025年頃 2030年頃 2035年頃 2030年目標 2035年目標 2040年目標 I-V要求性能(1セル) BOL:0.761V@2.18 A/cm² BOL:0.86V@2.29 A/cm2 BOL:0.77V@1.63 A/cm² EOL:0.81V@2.44 A/cm2 EOL:0.72V@1.76 A/cm² EOL:0.706V@2.37 A/cm² 温度範囲(膜面) ~90-95℃ -30°C~120°C -30°C~125°C -30℃~~12 2035年頃の製品市場 50,000h 耐久性 50,000 h 50,000h 主要材料目標*1 投入時の材料物性目標 空気極Pt目付量 0.12 mg/c 0.17 mg/cm² 0.20 mg/cm² 0.178 mg/cm² 500 A/g @80°C, 100%RH 1,740 A/g @80°C, 100%RH 4,630 A/g @80°C, 100%RH 39,000 A/g 空気極触媒質量活性 を新たに設定 Pt溶解速度 1/30倍 1倍 1/2倍 電解質膜厚さ 1um 8µm 5µm 0.106 S/cm @80°C, 80%RH 0.12 S/cm @80°C, 80%RH 0.15 S/cm @55°C~125°C, 電解質プロトン伝導率 0.05 S/cm @120°C, 30%RH 0.018 S/cm @120℃, 30%RH 0.032 S/cm @120°C, 30%RH 12%RH 67 s/m @80℃, 80%RH がス拡散抵抗 28 s/m @80°C, 80%RH 26 s/m @80°C, 80%RH 26 s/m @80°C, 80%RH 目標達成に向けた **2035年頃の目標達成** 低温作動、 高耐久化技術開発、廃棄製品から 技術開発課題*2 耐久性向上。 の貫金属リサイクル技術確立、高温対 不純物耐性 応新規触媒量産化 に向けた技術開発課題 材料系*3 現行原理極限触媒(高活性・Pt容出抑制)。 現行原理極限触媒量産化 (触媒) 高機能アノード(ラジカル抑制・不純物耐性) 高機能アノード量産化 を整理 超高耐久·高機能担体量産化 |超高耐久·高機能担体 (@広温湿度作動) (£) 科学 非白金(酸窒化物等, 貴金属に代わる新奇表面サイト) 類、材料種を特定する スケーリング則打破触媒、超高耐久性・ ものではない*5 新奇貴金属活性サイト、超低白金(アルカリ雰囲気、(単原子/数原子触媒活性サイト)) Pt非溶出・非白金モデル触媒 MEA/触媒等評価技術確立、広温湿度領域評価 マルチモーダル解析の活用とデータベース DX実装による高速・大量データ生成、トランス 解析·計算科学·DX の改良・材料スクリーニングと予測、計算に よる設計・スクリーニング、トランススケード/ミュレーション、 スケールシュレーション、MIによる要因分析・学理 手法確立、高温下計測技術確立・マルチモーダル解 のキーアイテム 評価·解析技術、計算科 探索·現象解明 析技術の確立とデータベース設計、計算による設 計・スクリーニング、MIによる材料候補の提示、自 MIによる材料候補の提示、自動・自律実験 動・自律実験による探索 参照データ拡充 による探索、参照デー9拡充 学、DX技術のキーアイ 低温作動、耐 (電解質材料)) 高耐久化技術開発 久性向上(ラジ カルクェンチ剤) テムを整理 薄膜化と耐久性の両立(新材料に対応するラン 薄膜の大面積化、Roll to Roll化 カルクェンチ剤・補強層、製膜性)

2. 解説書の主な追加・変更箇所

2.	.5 FC 材料目標	66
	2.5.1 材料目標の考え方	66
	(1) 2030 年頃の目標	66
	(2)2035年頃の目標	66
	(3)2040 年頃の目標	67
	2.5.2 材料初期物性検討のためのシミュレーションモデル	67
	(1)電解質のプロトン伝導率	68
	(2)空気極流路 /GDL ガス輸送特性	69
	(3)空気極触媒層ガス輸送特性	69
	(4)空気極触媒活性	70
	2.5.3 材料物性目標の検討	70
	(1) 2030 年頃の目標	70
	(2)2035年頃の目標	77
	(3) 2040年頃の目標	82
	2.5.4 主要材料コストの目安	89
	2.5.5 材料評価の考え方	92
	(1)性能耐久評価	94
	(2)電解質膜耐久評価	95
2.	.6 FC 材料開発の方向性	98
	2.6.1 PFAS 規制	98
	2.6.2 2030年頃に向けた材料開発	99
	(1)電極触媒	99
	(2)電解質材料	101
	(3)ガス拡散電極	102
	(4) MEA	

2.6	.3 2035 年頃に向けた材料開発103
Т	(1)電極触媒103
	(2)電解質材料104
	(3)ガス拡散電極 105
	(4) MEA105
	(5)シール材料106
	(6)セパレータ・表面処理106
2.6	.4 2040 年頃に向けた材料開発107
	(1)材料開発の方向性の考え方107
	(2) 材料開発の加速手段や取り組み方法108
	(3)カソード触媒材料109
	(4) 電解質膜材料
	(5)他の材料・部材114
2.6	.5 評価・解析技術117
Т	(1)材料・プロセス探索加速のための DX 技術117
- [(2)現象・機構解明(高度解析)118
	(3)現象・機構解明(計算科学) 125
2.6	6 人材育成 135

主な変更箇所を色付けして表示

3. 目標物性試算の前提(温度・加湿)(2035年)

7/20

必要物性を決定づける動力性能要件での状況を想定し,最高作動温度120℃@冷却水出口運転,セル冷却水 入口(=空気入口)105℃,空気入口湿度12%RH@105℃と定義.セル枚数396枚,ラジエータは1.4枚. ※大半の運転条件は70℃100%RH等の通常運転モード.

3. BOL 2Dシミュレーション: 溶出速度1/2倍のケース

20%RH, 50 mS cm⁻¹@120℃・30%RH)で達成可能.

3. EOL 2Dシミュレーション: 溶出速度1/2倍のケース

3. 暫定物性目標 (※GDL/流路, 界面抵抗等, 現況の開発状況をみて今後の修正あり)10/20

要素	物性	Gen2	203X	2035	2040
空気極触媒	Pt目付 (mg cm ⁻²)	0.17	0.20	0.18	0.12
	触媒層厚さ (μm)	7.5	6.0	6.0	3.6
	BOL 質量活性 (A g ⁻¹ @80℃・100%RH	500	1740 [×3.4]	4630 [×8]	39400
	EOL 質量活性 (A g ⁻¹ @80℃・100%RH	-	348	1088 ª	9968
	BOL 酸素拡散抵抗 (sm ⁻¹) [界面抵抗成分]	9.1 [×1]	10 [×1]	10 [×0.9]	8 [×1]
	Pt溶出速度	× 1	× 1	×1/2	×1/30
電解質膜	厚さ(µm)	8.5	8	5	1
	プロトン伝導率@120℃・ 30%RH (mScm⁻¹) ^b	18	32	50	150 ^e
流路・GDL	酸素拡散抵抗 (sm⁻¹) ^c	58.3 ^d	18	16 [×0.9]	18
	GDL/セパ、セパ/セパ等: 接触抵抗合計 (Ωcm ²)	-	0.0065	0.0065	0.0004

a.材料種問わず担体・活性種双方の高耐久化により実現、b. 電解質膜プロトン伝導率は補強材・クエンチャ導入後の値、c. 流路・GDL込みで達成する目標値. d. 並行流路での測定結果. e. 120℃12%RH

2035の暫定目標を提案(赤枠)

4.FC材料開発の方向性:PFAS規制に対する取り扱い

11/20

PEM型燃料電池用途は1.5年+5年の猶予(12年の猶予期間が可能性がある) 本ロードマップ検討期間中(~ '25/2)に規制可否の決定は不明確 →本検討では「規制有無両面の技術指針」を提案

5.2035年頃に向けた材料開発: ① 電極触媒

5.2035年頃に向けた材料開発: ① 電極触媒

ACS Appl. Mater. Interfaces 11 (2019) 34957

5.2035年頃に向けた材料開発: ② 電解質材料

電解質膜とアイオノマーの目標物性

2035年目標値

		膜厚 (µm)↩		€	5.0€	8.5←	25€	Chemours↩
	膜↩	H ⁺ 伝導率	at 120°C, 20%RH<	0.028<	¢	÷	÷	Nafion™↩
		(S/cm) 🚽	at 120°C, 30%RH⊲	0.050<	÷	0.018	0.016	NR211 <
		※1 ←	at 100°C, 40%RH⊲	0.0574	¢	0.027	0.024	※9 ←
			at 80°C, 80%RH↩	0.135	÷	0.106	0.086	
			at -30℃, 0%RH涨2↩	今後設定↩	÷	★←	★←	
電	H ⁺ 伝導率 (S/cm)↩ ↩ ア	H ⁺ 伝導率	at 120°C, 20%RH<	0.028<	÷	<⊐	÷	<⊐
留		(S/cm)↩	at 120℃, 30%RH<	0.050<	÷	←	★←	Chemours↩
所		<⊐	at 100°C, 40%RH⊲	0.0574	÷	←	★€	Nafion™↩
貿			at 80°C, 80%RH↩	0.135	÷	_←	★←	D2020←
			at -30℃, 0%RH※2↩	今後設定↩	÷	<⊐	÷	触媒層抵抗↩
	│	at 120℃, 20%RH<	¢	0.147	÷	÷	※9 ←	
	オ	抵抗(Ωcm²)↩	at 120°C, 30%RH⊲	¢	0.083	0.77←	0.37	
	ノ		at 100℃, 40%RH<	¢	0.073	0.41←	0.24	
	マ		at 80°C, 80%RH↩	÷	0.030	0.10	0.060	
			at -30℃, 0%RH※2↩	今後設定↩	今後設定↩	÷	÷	€7

電解質膜のH+伝導率は補強材込みの伝導率、クエンチ剤など耐久性を担保した状態での伝導率を想定

2030年 目標値 0.032 0.041

0.12

5.2035年頃に向けた材料開発: ② 電解質材料

15/20

Roll to Roll による 膜製造

電解質膜材料,補強層,クエンチ剤を複合化して電解質膜をRoll to Rollで作製

5.2035年頃に向けた材料開発: ③ ガス拡散電極

GDL単体としての酸素輸送抵抗はほぼ目標達成。流路構造との組み合わせを考慮し,抵抗を低減する必要

5.2035年頃に向けた材料開発: ④ MEA

17/20

触媒層内の酸素輸送抵抗の低減,作製プロセスの高度化,必要特性の検証と最適化,内部現象解明が必要

6. 評価・解析技術: 技術ポテンシャルマップ 材料開発目標 18/20

◆ 30年/35年/40年材料開発目標と検討項目

開発時期	目標値	触媒	電解質膜 アイオノマ	GDL/MPL MEGA	生産技術	産業界ニーズ
2025~ 2030年	電解質膜:厚さ8µm プロトン伝導率:0.032 @120℃,30%RH 触媒層厚さ:8µm 触媒目付:0.02 比活性:1,740 酸素輸送抵抗:10 S/m 分子拡散抵抗:18 S/m	 ・高温耐久触媒(120℃) →触媒表面における水可視化 →劣化要因の体系的解析 →120℃運転での非定常状態の可視化 →界面:カーボン・アイオノマ、カーボン表面(高温挙動) →イオン液体の結合状態 →高温環境下における計測技術の確立 →過渡現象の解析 	 ・高温耐久電解質膜 120℃以上、30%RH条件下での プロトン輸送解明 膜の相分離(酸官能基の状態)、膜 内の水の状態 ダイナミックな計測 ・薄膜化 断面相分離構造:温度・湿度相関 水の分布状態:温度・湿度相関 薄膜化による変化、制御 →高温における解析環境の構築 	・高温化 ・薄GDL化 ・触媒層構造最適化 ・ガス(水蒸気)の解析	 ・生産プロセスの現象解析 ①触媒層形成プロセス 	 ・産業界による解析PFの活用 現PF利用可能技術の展開 産業界ニーズ ・電極内での水挙動可視化 ・アイオノマー被覆状態可視化 ・高電位による触媒劣化の影響 評価 ・MEA活性とRDE活性 ・電解質膜の耐久性 ・材料表面物性の耐久性
2030~ 2035年	電解質膜:厚さ 5µm プロトン伝導率 0.066 S/cm@120℃, 30%RH 触媒層厚さ:6µm 触媒目付:0.18 mg/cm2 比活性:4630 A/g 酸素輸送抵抗: 10 S/m 分子拡散抵抗: 16 S/m	 ・新材料開発 微粒化・ナノクラスタ、規則化合金、 高エントロピー合金、高融点合金、 有機修飾、C・C・Nコート、高耐久 メソ孔担体、酸化物担体 →触媒反応メカニズム解析 →RDE vs MEA(イオン液体など 新規アイテムの現象解析) →高度な材料解析の実現 	 ・新材料開発 HC系、ホスホン酸系ポリマ、ナノファイバ、コンポジット膜、高 HOPIアイオノマ、アニオン膜 ・PFAS規制対応 炭化水素系電解質構造一性能相 関ライブラリ(スタンダード系) ・新材料に対応するクエンチャ開発 →MIに対応できる計測技術 	・理想的触媒層の構造	・PIによる触媒層プロセス最 適化 ・工程検査 →PIに対応可能な計測技術・ DX技術	・不純物の影響評価 ・高温での担体耐久性 ・EOLまでの触媒層構造変化
2035~ 2040年	電解質膜:厚さ1µm プロトン伝導率: <u>0.15@55</u> ~125℃, 12%RH以上 触媒層厚さ: 4µm 触媒目付:0.120 比活性:39,000 酸素輸送抵抗: 8 S/m 分子拡散抵抗: 18 S/m	・MIによる革新的触媒開発 →DX実装による高速・大量デー タ生成	 ・MIによる革新的電解質膜開発 ・PIによる電解質膜合成(製膜) ・120℃以上,12%RH条件下でのプロトン輸送解明 膜の相分離(酸官能基の状態),膜内の水の状態 →オペランド計測+DX技術 	・革新材料に対応する触 媒層の最適化	・新規材料に対応するプロセ ス最適化、システム化 →プロセスや触媒層構造の 最適化が可能な計測疑似術	
包括的な 取組		・高温環境下における反応、およ び、触媒(触媒層)劣化要因の体系 的解析	・炭化水素系電解質膜の構造・物 性・性能相関ライブラリ作成 ・非フッ素系劣化の要因解析(スタ ンダード系)	・劣化予測技術 ・大視野/高分解能測定や マーカー的解析活用によ る劣化起点の計測	・生産技術への高度解析適用 ・触媒インク、インク乾燥過程 のオペランド計測を含むPI	・イメージング・DX/シミュレー ション技術 ・AIによる画像解析

6. 評価・解析技術: 解析技術 ベンチマーク

- ◆ 3つの量子ビーム施設は、今後5年でアップグレート計画が進行中。中国勢の追い上げをかわし、欧米を追い越し、 トップの性能へ。
- ◆ 量子ビームのポテンシャルを最大限活用する計測・解析手法の開発と、35年/40年課題を見据えた課題解決型の 解析を行える環境を施設の協力を得て進め、仕組みとして運用することで日本の競争力を強化

「SPring-8-II シンポジウム 概要説明資料 (2024年8月2日)」より抜粋 https://new.spring8.or.jp/images/spring8/spring8-2/symposium_y3.pdf

6. 評価・解析技術: 技術ポテンシャルマップ 解析シーズ

20/20

◆ 量子ビーム施設の能力は、5年程度で世界トップへ。DXによる計測の高度化・効率化・自動化が実施、または、計画されている。
 ◆ 35年/40年の開発課題に照準を合わせて、解析技術のPF化や高度化、MI/PI活用を想定した計測自動化技術の導入が期待される。

		2024	2025	2026	2027	2028	2029	2030以降
施設upgrade	SPring-8	●ビームライン再編 ●検出器高度化	ニ、データセンター		●シャットダウン	•	SPring-8-II供用再開 一 輝度100倍	で世界トップへ
	NanoTerasu	●供用開始(コアリションメンバー枠) ●高輝度化、検出器高度化、テ	●供用 ータセンター <mark>→</mark> 輝度	開始(共用枠) 100倍で世界トップ				
	J-PARC	●1MW運転		•BL‡	<mark>曽強</mark> 輝度10倍、パルスイメージ	シグでは世界トップへ		
ジー メ	解析ニーズ 30~40年課題	●触媒、電解質膜の120℃環境にお ●産業界課題への対応	ける解析 ●新規材料開 ●構造データ 高速計測	見発のための高度な現象 っライブラリ作成のための	解析 ●その場観察に。) (触媒層構造最 ●MIを活用した材料	よる高度な現象理解 適化、劣化機構モデル伯 開発 ●PIを活用した	●プロセス プロセス開発	< や触媒層構造最適等
	ロードマップ 解析シーズ	 ●既存解析ツールの ●ハードワ プラットフォーム化と 機能拡充 ●DXによ 	ウエアの性能向上による る計測の高度化・高速化	解析技術の高度化 と ●MIに対応する	●その場観察技術の高度 る計測・解析技術 ●PIに対応する計測・解	度化 析技術 ●自動	計測·自動解析(触媒材)	斗、触媒層、電解質膜)
解析シーズ	SPring-8-II/ SACLA	 既存解析の提供、活用手法の拡大 汎用構造解析(XRD、XAFS、SAXS 高分解能XAFS、XAFS-CT、Operation OCITIUS/AKB導入に 生産技術課題への対応 高温現象解析 	、HAXPES、PDF) ando HAXPES よる高感度SAXS、高速 調整の自動化、リモート チモーダル計測/解析	●触媒表面反応 ●触媒層/プロセ EXAFS計測 ●材料・触 計測 ●アイオノ	解析のその場解析技術基 2ス解析技術基盤の構築 媒層解析への対応 マ・電解質膜の構造解析	■■●●	ビームライン増強 プロセスの自動が プロセス解析への 動計測・自動解析(触媒材)	解析 の対応 材料、触媒層、電解質膜)
	NanoTerasu	●供用手法のPF化 ●自 発光分光イメージング、オペランド計測 ●生産技術課題への対応 ●高温現象解析	自動計測 ●Opeando計 ●触媒表面 ●軽元素分	測基盤構築 両反応解析のその場解析 が析(水)、真空中でも大気	●自動計測・自動解析 技術基盤の構築 〔圧その場観察	(触媒材料、触媒層、電纜	¥質膜)	
	J-PARC	 ●既存解析のPF化 ●Z ●CV-SANS、反射率。準弾性散乱 等のオペランド化 	K・プロトンの構造と移動 ●ユーティリティ樹	り現象解析 機能増強による大容量セ ●イメージングデータ	●ビ- ルの計測 ●BL整備に のDXによる解析 ●	ームライン増強 よるラジオグラフィの高 実機セルの大視野/高分	i度化)解能可視化技術	