

Integrated Electrochemical Systems for Scalable CO₂ Conversion to Chemical Feedstocks

PM : Masakazu Sugiyama

The director and a professor at Research Center for Advanced Science and Technology (RCAST), The University of Tokyo

Project Members :

The University of Tokyo, Osaka University, RIKEN, UBE Corporation, Shimizu Corporation, Chiyoda Corporation, Furukawa Electric Co. Ltd., Maxell, Ltd.

1. Project Overview

2. Progress and Results

3. Summary and Future Challenges

1. Project Overview

2. Progress and Results

3. Summary and Future Challenges

(Goals in FY 2029)

Development of a system to convert atmospheric CO₂ into useful chemical feedstocks based on electrochemical processes.

Achievement of carbon cycle based on electricity which is a platform of future energy system \sim Toward 100 million ton/year reduction of CO₂ emissions @ 2050 \sim

Products : Ethylene

Source: Plastic Waste Management Institute, "プラスチックリサイクルの基礎知識2020" http://www.pwmi.or.jp/pdf/panf1.pdf

Our Future Vision

Urban DAC-U System (Artificial Photosynthesis)

Buildings Function as "Air purifiers for a city"

Urban Artificial Photosynthesis

CO₂ and O₂ circulation

Energy Savings in Air Conditioning and Ventilation Systems

Scalability Based on Electrochemical Processes

Estimated relative production cost of 1 ton ethylene

Scalable Social Implementation for Various Scenes

Work Packages of the Project

R&D items		Player			
CO ₂ capture	CO ₂ capture by TSA method				Collaborative member
enrichment	Electroche	mical CO ₂ enrichment	OSU	Collaborative member	
CO ₂ electrolysis	Reactor member	Catalyst Functional Substrate	Substrates	OSU UTK	UBE
			Cu-based materials		FKW
		Gas-Diffusion Electrode (GDE)			UBE, FKW, Maxell
		MEA- based reactor	Membrane		Collaborative member
			Reactor	RIKEN	
		Stack			
System integration	Reaction process development / Process integration Integrated system analysis & control / LCA UTK CYD				

*UTK: The University of Tokyo, OSU: Osaka University,

RIKEN: Institute of Physical and Chemical Research,

UBE: UBE Corporation, SC: Shimizu Corporation,

CYD: Chiyoda Corporation, FKW: Furukawa Electric Co., Ltd, Maxell : Maxell, Ltd.

	2022	2024	2029
$CO_2 emission \approx (t-CO_2/t-C_2H_4)$	+1.0 \sim +1.5 at device level	$+0.5 \sim +1.0$ at laboratory scale 1,000 hours	<-0.5 at pilot plant scale 5,000 hours
CO ₂ emission during operation	−0.5 ~ 0.0 (5.0~4.5 V, FE= 55 ~65%)	$-1.0 \sim -0.5$ (4.5~3.8 V, FE= 55~80%)	<-2.0 (3 V, FE= 80%)
CO ₂ emission upon equipment manufacturing	+1.5	+1.5	+1.5

 $%CO_2$ emission of the entire system from atmospheric CO_2 capture to ethylene production (including emission upon manufacturing of equipment)

Energy required for each process

Pilot Demonstration Image

Pilot Implementation Image

- CO_2 throughput : ~10 kg/day
- Ethylene production $: \sim 3 \text{ kg/day}$

1. Project Overview

2. Progress and Results

3. Summary and Future Challenges

CO₂ Capture and Enrichment : Basic Performance

CO₂ Capture : DAC Requirement Definition for Buildings

Concept of DAC requirement definition for buildings

2022 Annual construction start floor area (m²) Ref.) MLIT: Statistical survey of construction starts 2022

Diagram with the boundary

		Office						
		Complex	Large	Below medium	Theater	Store	Hospital	Factory
	CO ₂ conc.	≦1,000 ppr	n				≦1,000 ppm	≦5,000 ppm
Requirements	Noise /Vibration	NC45/VAL≦		NC45/VAL ≦		NC45/VAL≦	NC45/VAL≦	
	Space	4~6% of floor area						
	Temp. /Humi.	17~28℃/40~70%R.H.						
	Air quality	HCHO:100	µg/m³,	TVOC:4				
	Odor	-						Offensive Odor Control Law
	Energy type	Electricity					Electricity /heavy oil/gas	Electricity /heavy oil/gas
	Special facilities	District heating and cooling					Private power generation	<pre>% cogeneration</pre>
DAC echanism	Adsorbent	Solid adsorbent				Solid adsorbent	Solid adsorbent	
	DAC mechanism	TSA		TSA/PSA	PSA /TSA	TSA/PSA	PSA/TSA	
E	Partner candidate							

Requirements definition table

CO₂ Enrichment : Stability and Scale-up

CO₂ Electrolytic Reduction : Cathode Electrode Design Guidelines

MOONSHOT REMEMBER

CH₃COOH

HCOOH C₃H₇OH

C₂H₅OH

H₂ CO

 CH_4

C₂H₄

Measures to improve current efficiency

vs. Hydrogen

 $(\ensuremath{\textbf{1}})$ Thorough elimination of macro hydrogen generation sites

(2) Appropriate catalyst structure control according to target current value Example: Appropriate catalyst loading according to target current value

Current density : small Current efficiency : Large

Current density : Large Current efficiency : Large Current efficiency : small

\Box vs. Other CO₂ reduction products

catalyst/electrode porosity Improvement of CO local partial pressure of CO by increasing Improvement of CO local partial pressure by increasing current density Establish optimal electrode design guidelines

Compatibility of current efficiency with current density

CO₂ Electrolytic Reduction: Cathode Electrode Catalyst Development

□ Attaining both high current efficiency and high stability

□ Efforts to achieve a high current efficiency

- □ Ethylene current efficiency of 56% with polyhedral Cu
- □ Factors are being identified and design guidelines are being developed

CO₂ Electrolytic Reduction: Cathode Electrode Study for Industrialization

Start of electrode prototyping through institutional collaboration / Preliminary report of results (Prototype 1)

Cell voltage of 2.82V @ 200mA/cm² was confirmed

by optimizing the anode electrode structures

CO₂ Electrolytic Reduction: Larger Area and Stacked Reactors

□10 cm square cell achieves performance equivalent to 2.5 cm square cell 10 cm ⁸⁰

Ethylene formation was confirmed in a 2.5 cm square x 4 stack

CO₂ Electrolytic Reduction: Simulation Development

Development of a simulation model was initiated

Optimal flow path design for large-area cells based on flow paths and flow conditions inside the GDL.

Integrated Systems: Conceptual Design and LCA

□ Integrated system design: introduction of CO₂ recycling flow using enrichment cells

□ LCA evaluation of CO₂ recycling

□ Study LCA for a system that reuses heat from combustion of by-products as heat for CO₂ desorption in DAC

Integrated Systems: Control and Evaluation

■Study on system control for continuous operation ➡Confirmed the impact of operation control

□ Started evaluation of "CO₂ enrichment + CO₂ electrolysis" coupled operation at lab. scale

International Collaborations

Outreach Activities

Exhibited at SCIENCE AGORA 2023 organized by JST

Nov. 18 - 19, 2023, at Telecom Center Number of visitors to the project booth: over 400 Exchange of business cards: about 15 companies

1. Project Overview

2. Progress and Results

3. Summary and Future Challenges

Summary and Future Challenges

D Summary

Theme	Major Results	Future Works	
CO ₂ Capture and Enrichment	•Clarified the concept (requirements) of the implementation model for buildings •Successful enrichment of atmospheric CO ₂ from 400 ppm to 100% (pure CO ₂)	 Design and manufacturing of prototypes Low drive voltage and long-term stable operation 	
CO ₂ Electrolysis	 •FE to ethylene 60%, 2.8 V operating potential between 2 poles achieved •Efforts to achieve large area / 10cm square cell evaluation and institutional collaboration 	 Development of electrodes that simultaneously satisfy current efficiency, current density, and stability 	
System Integration LCA	\cdot Conceptual system design from atmospheric CO_2 capture to ethylene production and LCA for CO_2 emission	 Continuous process benchmark of "CO₂ Enrichment + Electrolysis." Improvement of LCA accuracy 	

□ Targets

Fiscal Year	Scale	CO ₂ throughput (kg/y)	CO ₂ emission reduction target (per ton of ethylene produced)
2024	Laboratory	25	+0.5 \sim +1.0 ton
2027	Bench	250	±0.0~+0.5 ton
2029	Pilot	3,300	 -0.5 ton (Carbon negative and 5,000 hours of continuous operation achieved)

Efforts toward social implementation

Establish a four-layered structure

END