No. A-2-1E

PJ: Integrated Electrochemical Systems for Scalable CO₂ Conversion to Chemical Feedstocks

- **Theme : Project Overview**
- **Organization : The University of Tokyo**

Contact : sugiyama@enesys.rcast.u-tokyo.ac.jp / ebe@enesys.rcast.u-tokyo.ac.jp

1. Research Outline

 \square Development of a system to convert atmospheric CO₂ into useful chemical feedstocks based on electrochemical processes.

Achievement of carbon cycle based on electricity which is a platform of future energy system \sim Toward 100 million ton/year reduction of CO₂ emissions @ 2050 \sim

2. Our Future Vision: Urban DAC-U System (Artificial Photosynthesis)

Air conditioning and ventilation + DAC

NEDO

CO₂ Enrichment + Electrolysis

Urban DAC-U system to capture and recycle CO₂ from inside and outside of buildings

- \Box The concentration of O₂ as well as CO₂ can be maintained, even when people are in the office, reducing energy for ventilation.
- \Box Conversion from atmospheric and indoor CO₂ into useful chemical feedstocks

Work Packages of the Project

KPI				
	2022	2024	2029	
$CO_2 emission \approx (t-CO_2/t-C_2H_4)$	$+1.0 \sim +1.5$ $+0.5 \sim +1.0$ at laboratory scale 1,000 hours		<-0.5 at pilot plant scale 5,000 hours	
CO ₂ emission during operation	$-$ 0.5 \sim 0.0 (5.0~4.5 V, FE= 55 \sim 65%)	$-1.0 \sim -0.5$ (4.5~3.8 V, FE= 55 ~80%)	<-2.0 (3 V, FE= 80%)	
CO ₂ emission upon equipment manufacturing	+1.5	+1.5	+1.5	

**CO₂ emission of the entire system from atmospheric CO₂ capture to ethylene production (including emission upon manufacturing of equipment)

Division of roles

mosphere/	Osaka University	3-2 Process	cess ion	R&D items		Player		
Hubbl CO ₂	CO ₂ Chi	yoda Corporation	High-value	CO ₂ capture and	CO ₂ captu	re by TSA method	SC	Collaborative member
	Enriched CO ₂		(ethylene, etc.)	enrichment Elect	Electroche	lectrochemical CO ₂ enrichment		Collaborative member
	0 ₂					Catalyst Catalyst		UBE
	\ominus \oplus					Functional Substrate Cu-based materials	OSU UTK	FKW
		k 1	A scalable	CO ₂	Reactor	Gas-Diffusion Electrode (GDE)		UBE, FKW, Maxell
			electrochemical system		member	MEA- based reactor	RIKEN	Collaborative member
	Re	newable energy				Stack		
\Box CO ₂	Capture and Enrich	nment (Poste	r No. A-2-2E)	System integration	Reaction p Integrated	process development / Process integration d system analysis & control / LCA	UTK	CYD
□ CO ₂ □ Syst	tem Integration / LO	CA (Poste	r No. A-2-4E)	*UTK: The Universi RIKEN: Institute o UBE: UBE Corpora CYD: Chiyoda Cor	ty of Tokyo, OSU: f Physical and Ch ition, SC: Shimizu poration, FKW: Fu	: Osaka University, emical Research, u Corporation, urukawa Electric Co., Ltd, Maxell : Maxell, Ltd.	4	<u>.</u>
Poster No	. Theme		Major Results			Futu	ire V	Norks
A-2-2E	CO ₂ Capture and Enrichment	 Clarified the concept (r Successful enrichment 	requirements) of the implementation r of atmospheric CO ₂ from 400 ppm to	model for l 0 100% (pi	ouilding ure CO ₂	\cdot Design and manufactur \cdot_2) \cdot Low drive voltage and lo	ing of p ong-terr	rototypes m stable operation
A-2-3E	CO ₂ Electrolysis	 •FE to ethylene 60%, 2.8 V operating potential between 2 poles achieved •Efforts to achieve large area / 10cm square cell evaluation and institutional collaboration •Development of electrodes that simultaneously satisfication current efficiency, current density, and stability 						
A-2-4E	System Integration LCA	 Conceptual system des production and LCA fc 	sign from atmospheric CO ₂ capture to or CO ₂ emission	ethylene		 Continuous process ben Electrolysis." Improvement of LCA ac 	chmark curacy	k of "CO ₂ Enrichmer
	東大先端研 Research Center for Advanced Science and Technology The University of Takya		RIKEN UBE Corporation		2	CHIYODA FURUKAU		

UBE Corporation

4. Goals and Roles

2-1. Progress

- Selection of effective adsorbents
- \square 10-fold enrichment of atmospheric CO₂
- Policy formulation for defining DAC requirements from architecture
- Continuous search for DAC collaboration partners for requirements definition (Signed 7 NDAs)
- Define the boundaries between building equipment and DAC, and create a requirements definition organization template (tentative)

2-2. Progress

- \blacksquare Enrichment of CO₂ from 0.2% to 100%
- □ Selective electro-filtration of CO_2 from a mixture of unreacted CO_2 and C_2H_4 emitted from the electrolysis reactor
- Lower voltage and larger area by improving electrodes and reactors
- Identify performance degradation factors and develop guidelines for countermeasures

Vulnorable to maisture Low

Diagram with the boundary

Requirements definition table

Electricity

adsorbent

PSA/TSA

/heavy oil/gas

3-1. Future Works

 Formulation of DAC requirements from architecture
 Continuing to search for DAC collaboration partners to formulate the requirements definition

Organic electrolyte	\sim 1 V	Low voltage	durability
Bipolar electrodialysis	>1.5 V	High durability	High voltage
Aqueous electrolyte	3~4 V	Simple structure	High voltage Low durability
This Project	1.9 V (Target : 1.1 V)	Low voltage	Low durability System design freedom: wide

3-2. Future Works

Reducing the operation voltage
 Preparing the integrated system
 Enhancing the system durability

No. A - 2 - 3E

PJ: Integrated Electrochemical Systems for Scalable CO₂ Conversion to Chemical Feedstocks (Chebo Theme : CO₂ Electrolysis

Organization : Osaka University / RIKEN / UBE Corporation / Furukawa Electric Co., Ltd. / Maxell, Ltd / The University of Tokyo

Contact : nakanishi.shuji.es@osaka-u.ac.jp / katsushi.fujii@riken.jp

1. Research Outline

Progress 2.

1) Improvement of Reaction Selectivity/Reduction of Operation Voltage

 ± 0 90 \Box 56% of FE (C₂H₄) was achieved at the 3.4 V of operation voltage (MEA). +1.0(%) 80 □Operation voltage of 2.8 V (@200 mA/cm²) was achieved. ※FE : faradaic efficiency +1.570 FY 2022 500 60 (%) Reaction FY 202 **60%** 400

 CH_4

CO

H₂

C₂H₄

[Review]

Attaining both high faradic efficiency and high stability 2)

Improvements of electrocatalysts and electrode substrate.

Design guideline was obtained through the identification of critical factors.

Scaling up of the reactor 4)

0

Team-based development of 3) industrial scale electrode

Distribution of CO₂ and O₂ concentration between Anode and Cathode

- □ 10 cm square scale reactor was successfully developed.
- □ Key factors for the scaling up the reactor were identified.
- □ Started to study stacking. Ethylene production was confirmed.
- A skeleton model for simulating mass transfer in

3. Future Works

C₂H₄ 2.5 cm 5 cm 10 cm efficie 60 50

> 2.5 cm square x 4 stacks reactor (Ethylene production confirmed)

Reproduce the reduction of CO₂ concentration (reduction reaction) as you go downstream in Cathode. →Analysis of the effect of flow on reaction efficiency.

GDL

MOONSHO

50

40

30

20

Optimal flow path design for large-area cells based on flow paths and flow conditions inside the GDL.

 \Box Further improvements of the performance of the CO₂ electrolysis reactors. Developing electrodes and reactors that satisfy all the requirements for higher FE, current density, and stability. Developing scalable MEA-based cell stacks. (MEA: membrane electrode assemblies)

(2)

□ Process integration from CO₂ capture, through enrichment, to electrolytic reduction □ Design of a pilot-scale plant

Development of process concepts for industrialization

[Consideration of system integration from the early stages of R&D]

Reaction process development / Process integration (Chiyoda Corporation)

 \Box Co-operative developments with the project members. Evaluation of CO₂ reduction catalysts.

- ① Analyze gaps between current and ideal systems
- Efficient PDCA cycle between technology and system development
- ③ Clarify directions and issues for technological development
- ④ Review of systems in response to technological developments

2. Progress

Characterization and Control of integrated systems

- LCA of the system (The University of Tokyo)
- Optimal operating conditions for each process
- **D** Developing integrated process control methods
- LCA evaluation of the entire system

No. A-2-4E

1. Research Outline

PJ: Integrated Electrochemical Systems for Scalable CO₂ Conversion to Chemical Feedstocks

Theme : System Integration / LCA

Organization : The University of Tokyo / Chiyoda Corporation

Contact : ebe@enesys.rcast.u-tokyo.ac.jp / takeda.dai@chiyodacorp.com

Figure 4. "CO₂ Enrichment + CO₂ Electrolysis" Continuous Benchmarking Equipment \Box Lab. scale "CO₂ Enrichment + CO₂ Electrolysis" coupled operation has

been started for evaluation.(**Fig. 4**)

Pilot Construction Pilot Demonstration Figure 7. LCA evaluation for electrolytic reduction process (excerpt)

□ Conduct basic study of LCA (**Fig. 7**)

➡ Study LCA for a system that reuses heat from combustion of by-products as heat for CO2 desorption from DAC

3. Future Works

 \Box Verification and confirmation on a lab. scale using the "CO₂ Enrichment + CO₂ Electrolysis" continuous evaluation system (**Fig. 4**)

➡ Identification of issues / Implementation of 500 hours operation and forecast of 1000 hours operation (FY2024 target)

□ Improving the accuracy of system evaluation (LCA, etc.)

Review and optimization of systems in accordance with the progress of technological development

□ Collaboration with various agencies (continued)