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PrOjeCt Overview ® Although the transition to electric vehicles has been proposed for the
realization of a carbon-neutral society, in Europe, reluctant to fully transition

disposal Industrial Wastewater (w-NH) to electric vehicles.

€ Considering the introduction of e-fuel, an internal combustion engine
(especially for truck transportation) is essential.

€ Truck-mounted catalyst does not need to be replaced even after running 1
million km  — Cost reductions, wage increases, etc. are expected

€ From the viewpoint of the nitrogen cycle, Realization of breaking away from
the present treatment system wasting energy (industrial waste liquid,

For building a nitrogen recycling society, development of an livestock farm, sewage treatment plant)

ammonia recovery technology is an urgent issue 4 Cost. reduction by reducing manufacturing cost of urea for fertilizer by
reusing recovered NH,
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Project Overview € Although the transition to electric vehicles (EVs) has been proposed

| to realize a carbon-neutral society, European countries are reluctant
Exhaust Gas (NOx) & to fully adopt EVs.

€ Considering the introduction of e-fuel, an internal combustion engine
(especially for truck transportation) is still essential.

€ Truck-mounted catalyst does not need to be replaced even after
running 1 million km. — Cost reduction, wage increase, etc. are
expected.

€ Cost can be reduced without the usage of reductant NH,.

Final Aim

To create a nitrogen recycling society, development of high- - Pilot scale test using zeolite for high-durability NOx purification

performance denitrification technology is an urgent issue. - Demonstration of NOXx purification without NH,

deNOx Catalyst for NH;-SCR
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® Designing of high-performance zeolites ® Research objectives ~2024FY
Referehncde Zeﬁ“te - Chemféglnzgor!iggsition 1) Pore structural analysis of nanoporous materials
:'ng Né)(r(zzt)ne\/ren::ioit?’a’lcéty defect sites, Developing fundamental gas physisorption analysis

-Produces N,O loading active species protocol toward upgrading the performance of
nanoporous material-based catalysts. Feedback the
obtained analysis results to the synthesis process for
producing high performance NOx reduction catalysis.

Expected performance :
High NOx conversion rate,
High hydrothermal stability,

Less production of N,O

Realize high performance zeolite
which can realize both

2) Structural observation of nanoporous materials
Developing fundamental observation protocol for

_ : = nanoporous material-based catalysts in micrometer
@Synthesis Eu%);rreesstfggool};ng serf scale by using high-resolution semi-in-lens FE-SEM
| DT Hvdrothermal system. With combining the EDS mapping technique to
Controlling framework, YOroriermal - acquire both  high  resolution images as well as

chemical composition, Al distribution, stability test,

crystallization mechanism deterioration mechanism compositional information.

® AIST experimental apparatuses ® Top-surface and cross-sectional FE-SEM

<Structural analysis> <Porous characterization>
Particle size and shape, cross- surface area,
sectional observation, pore volume,
visualization of Al or other pore size distribution
catalytically active species : 4 ”
Zeolite (parent) Zeolite (ion-exchange) Zeolite (steam) Zeolite (acid)
/ | (Na-form, Si/Al;,, = 2.8) (NH,-form, Si/Al,, = 2.8) (H-form, Si/Al,, = 2.8) (H-form, Si/Al,,,,, = 250)
Smooth to rough surface
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Broad ion-milling Semi-in-lens FE-SEM Gas physisorption apparatus Zeolite (ion-exch é )- Zeolite (stoam) *Zeolite (actd)
(Hitachi IM4000plus) (Hitachi SU8600) (Microtrac-Bel Belsorp MAX X) aform st M L AL o form SUAL e
In operation FY2020 +EDS (Oxford Extreme) In operation FY2022 (Na-form, Si/Alrye =2.8)  (NH,-form, Si/Al,,, = 2.8)  (H-form, Si/Aly,, = 2.8) (H-form, Si/Aly,, = 250)
In operation FY2021 After steaming : bright contrast appeared
Defect structure evaluation apparatus After acid leaching : formation of mesopore

—>Will be in operation from Jan. 2024

® Al distribution by FE-SEM/EDS ® Pore structure assessment by Ar physisorption

Change in mesopore Change in micropore
Ny T )
q;.(v?‘w €J. BJH pore size distribution d-plot in semi-logarithmic scale

(acid) (H-form, Si/Altg = 250)
-8~ Zeolite (steam) (H-form, Si/Alqg = 2.8)
Zeolite (parent) (Na-form, Si/Aly, = 2.8)
-8~ Zeolite (Al-rich) (Na-form, Si/Alg = 1.2)
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o <Formation of Mesopore>

Zeolite (parent) Zeolite (steam)

Na-form, Si/Al,_,. = 2.8) (H-form, Si/Al;,, = 2.8) -Zeolite‘(loarent) . . .
(Nocform, Si/Alrw o naform, siAa - 28 1, Steaming—dealumination from the framework

After dealumination 2. Acid leaching—removal of amorphous aluminosilicate

—high concentration of Al at bright contrast
—>Presence of amorphous aluminosilicate

<Research outline (AIST)>

Local structure and porosity of zeolite catalysts prepared in this project were evaluated using Ar physisorption

measurement from extremely low relative pressure region (10-8), high-resolution scanning electron microscopy, and energy
dispersive X-ray spectroscopy. Particularly, the detailed quantitative textural pore analyses and direct visualization of
aluminum distribution as well as dealumination behavior for both steamed and post-treated zeolites were investigated to
understand the characteristic features of the existing and developing potential zeolite catalysts. Based on the results
obtained in this study, we have developed the fundamental analysis protocol for nanoporous materials to clarify the
essential factors governing the hydrothermal stability of zeolites, which will provide an important guide to fabricate optimal
zeolite catalysts that would suit the target application aimed in this project. EAIST

<Micropore>
Same framework, but change in effective pore size
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> Chemical composition distribution of zeolite precursor S S ( ypermapping method )
gels with a spatial resolution of less than 10 nm realized —
by STEM-EDS method was analyzed and its effect on CcL S EDS
crystallization was discussed. | beam
Composition distribution (uniformity) of the gel is
ms) Affects nucleation in zeolite crystallization .
=) Affects zeolite crystal particle size s -
\ ) ] 1
4 Precursor gel synthesis conditions and SEM A \ P“‘" !
. . acceleration voltage Analyzes up to 512 X512 areas
photo of zeolite crystals formed from the gel 200KV EDS spectrum is stored in each pixel
1 pixel : 0.8nm
CP me"'hOd Co-precipitation Method At-once Method P .
...... Measurement time: 1 hour
1) NaOH, 1) H,S0,4,, 1) NaOH, 1) H;S04q) (1 pixel measurement time: 0.0137 seconds)
2)H,0 2) H,0 o 2) H,0 2) H,0 . L )
3) Cab-O-Sil 3) Aluminum sulfate | 3) Cab-0-Sil 3) Aluminum sulfate |
e )

V 4) 80°C oven v4) 80°C oven

Al solution

S Al solution
(Alx(SO,); sol. + H,S0,) | |

(Al}(SO,), sol. + H,S0,) |

' Si solution (Na,SiO; sol.) Si solution (Na,SiO; sol.)

[ Dropbydrop] [ pouratonce]

Beaker Beaker
Stir for 1 hour Stir for 1 hour
(500 rpm @RT) (500 rpm @RT)
(a) Peristaltic pump
= :
NSO \Sas
I *H, : + sto“
Na,SiO; sol. Al2(SO4)s s0l. o < S
(Cabosi+NaOH+H,0) Amorphous + H,S0, 1L
aluminosilicates
(pH~7) Amorphous aluminosilicate (pH"~7)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

CP
method

hydrothermal synthesis

Analysis results of composition distribution
(spatial distribution of composition)

Texture analysis (Gray-Level Co-occurrence Matrix, GLCM)
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Spatial distribution of composition: AO > CP
Non-uniform spatial distribution results in non-
uniform particle size distribution
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Analysis results of composition distribution

(concentration distribution)

Ai/Si composition ratio distribution
me+h0d (binding size :11x11)
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»| Quantification method: Standardless deVIatlon
» Correction method: Cliff-Lorimer 066 :
»| Calibrated with Ceramics Association hikosiiocidicome e

standard glass ” I Si *at ratio) x100"_
I | |
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Average composition ratio(Al/Si) X100
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Ai/Si composition ratio distribution
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Q-Q plot
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Quantification method: Standardless
Correction method: Cliff-Lorimer
Calibrated with Ceramics Association
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Composition uniformity: AO > CP

Relationship between the amount of change in chemical potential of the
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reaction solution environment and uniform nucleation density (rate)
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q;: Critical nuclear density, Ap: Chemical potentialv: Volume per 1 mol
r*: Radius of critical nucleus (spherical approximation)

K: Boltzmann constant, T: Temperature

q.: Density of crystal growth unit, y: Surface energy per unit area

B

\ AO: u=4.02 o0=0.47
YW CP: p=4.14 4 =0.66

High compositional uniformity gl I e
= The density of crystal nuclei increases

Alfc. % 100

The number of crystals is large and the crystal size is small

\»

-
Summary

> We applied the composition distribution measurement method in the micro region
(single nano size) established in last year's research to zeolite precursor gel.
Differences in the uniformity of the gel composition (Ai/Si ratio) and its spatial
distribution were observed depending on the method used to prepare the precursor gel
(AO method and CP method).
> The differences between zeolite crystals synthesized using gels produced by the AO
method and the CP method as raw materials were explained by evaluating the
uniformity of composition distribution.

» Useful knowledge for process development such as
manufacturing scale-up
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Outline

2021 2022 2023 2024 2025 2026 2027 2028 2029

*Further advancement of NOx removal process from internal combustion engines

Development . . .
P *Search and refinement of candidate materials for new exhaust gas catalysts

Item
C(?ntesni‘s *Mass production of new zeolite catalysts
* Pilot demonstration of NOx purification catalyst Final target (FY2029)
Final Taraet | Develop innovative new materials for exhaust gas purifying catalysts that do not use NH3 and precious metals, which enable
(FYZOZS) operation under combustion conditions (lean-burn engines, etc.) that significantly improve fuel efficiency of internal

combustion engines and drastically reduce CO, emissions.

* Mass production of zeolite catalysts with low N,O emissions
* Confirmation of the feasibility of NOx purification catalysts that do not use NH,
(e.g., performance target: purification rate of 50% or higher at 300°C)

Fiscal Year 2024
Target

*The new zeolite catalyst showed better NOx decomposition performance than the current catalyst (Cu-CHA) in the NH;-SCR

reaction before and after the endurance test at 800°C.

Current Main [-N,O emissions were also successfully reduced by 70-75% compared to the current catalyst both before and after the
Results endurance test.

*Successfully synthesized new zeolite catalysts in 50 L, 100 L, and mass production (2000 L) scale.

= Applied for 3 patents for new zeolite catalyst synthesis method, catalyst preparation method, etc.

Relative NOx conversion

Comparison of NOx purification performance and N,O
emissions between conventional (Cu-CHA) and new catalyst.

Aging condition:H,0-10vol%, 800°C, 5h, SV = 3000 h-1
Reaction condition :SV = 200000 h-1, input NOx = 350 ppm, NH; = 385 ppm, O, = 14 vol%, H,0 = 5 vol%,
Catalyst pellet size : 600~1000 ym

Relative NOx conversion Relative N,O emission
—e— Cu-CHA fresh -0 -Cu-CHA fresh —e— Cu-CHA fresh -0 -Cu-CHA fresh
—4— New cat-1_fresh —4A— New cat-1_aged —4— New cat-1_fresh —— New cat-1_fresh
—8— New cat-2_fresh -0 -New cat-2_aged —8— New cat-2_fresh -0 -New cat-2_fresh
——New cat-3_fresh —O— New cat-3_aged —e—New cat-3_fresh —0— New cat-3_fresh
100 140
90
€ 120
80 -§
70 E 100
60 o 80
50 Q,
40 Z 60
2
30 = 40
20 E
10 20
0 0
100 200 300 400 500 600 100 200 300 400 500 600
Temperature (°C) Temperature (°C)

- The new zeolite catalyst had higher NOx purification performance and lower N,O emissions in all samples
before and after steam treatment.

Scale-up synthesis of new zeolite catalysts.

Lab (~200 mL) Pilot (50 — 100 L) Mass production
yield: ~2 g yield : ~15 kg (2000 L)
=, | yield : ~300 kg
U= .
target zeolite, ¢ \ target zeolite,
100.0 target zeolite, 100.6

target zeolite,

99.6
100 target zeolite, 91.6
85.8 target zeolite,
81.1
target zeolite,
52.5
impurities
impurities [l m—Ae—
impurity impurity

100 mL 50L 50L 50L 100 L 100 L 2000 L
(Lab) (1%t try) (2@try) (39try) (Isttry) (2" try) (15t try)

@)
o

(®))
o

N
o

N
o

Relative XRD peak intensity

-Succeeded in reducing impurities in 50L and 100L scale prototypes.
-Success in synthesis of new zeolite in mass production scale (2000L).

Direct denitration: screening of various complex oxides

Implementation: Screening

Screening of composite oxide catalysts of various
structures with the cooperation of Prof. Motohashi of
Kanagawa University.

Outcome: Determined direction of development
We found the possibility of activity in certain types of
composite oxides.

Future plans

Aiming to improve activity by further screening of
composite oxide materials, increasing specific
surface area, and examining supported metals.

Relative average NOXx conversion

Problems with current SCR catalyst (Cu-CHA).

P s : Urea solution

(NH,),CO + H,0

tank > 2NH, + CO
Diesel Diesel Ammonia
; oxidation C slip > exhaust
sl catalyst catalyst

* NH,-SCR
ANO + 4NH, + 0, > 4N, + 6H,0

6NO, + 8NH; > 7N, +12H,0
4NO + 4NH,; + 30, > 4N,0 + 6H,0 P

i i * Greenhouse effect is
B = —=_ 300 times greater than
OO -

* Ozone depleting effect.
* Lifetime of 120 years.
https://ja.wikipedia.org/wiki/ \ Cu-CHA zeolite

* The NH,-SCR reaction using Cu-CHA catalyst is mainly used in NOx purification systems for diesel engines.
* Conventional Cu-CHA is known to have high NOx purification and durability performance,
but 2-5% is emitted as N,0.

Comparison of average NOx purification performance and N,O
emissions between conventional (Cu-CHA) and new catalyst.
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Relative average NOx conversion before and Relative average N,O emissions before and
after durability test (150-500°C) after durability test (150-500°C)
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- The new zeolite catalyst showed better NOx decomposition performance in the NH3-SCR reaction than the
conventional catalyst (Cu-CHA) before and after the endurance test at 800°C. The N,O emissions were also
successfully reduced by 70-75% (compared to the target of 50%) from Cu-CHA both before and after the
endurance test.

Performance evaluation results of scale-up synthetic products.
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(conventional) (Lab) sample sample (conventional) (Lab) sample sample

- The catalyst performance exceeded the target for the 100 L scale sample.
-2 m® sample is currently under evaluation.

Summary

= The goal is to develop and mass produce a new zeolite catalyst with less than half the N,O emissions of the
current catalyst (Cu-CHA) in the NH,-SCR reaction.

= The new zeolite catalyst showed better NOx decomposition performance than the current catalyst before
and after the endurance test at 800°C.

= The N,O emissions were also successfully reduced by 70-75% compared to the current catalyst both before
and after the endurance test.

= Three patents were filed for the synthesis method of the new zeolite catalyst and the catalyst preparation
method.Succeeded in synthesizing new zeolite catalysts on a mass production scale (2000 L).

Future Plans

- Development and mass production of catalysts that do not use NH; (direct
denitration).
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