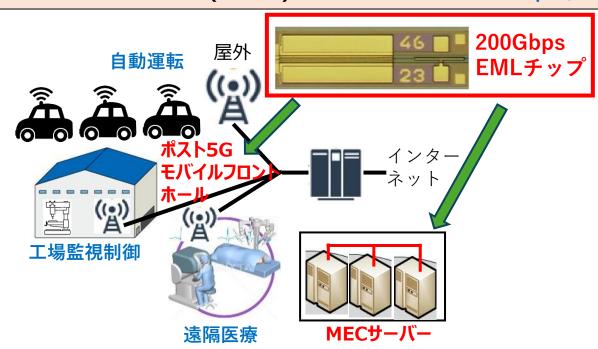
ポスト5 G情200Gbps/λ光デバイスの研究開発報通信システム向け

三菱電機株式会社 高周波光デバイス製作所 光デバイス部長 山内 康寛

1. 事業概要

EML: Electroabsorption Modulator integrated Laser diode


MEC: Mobile Edge Computing

■課題

- (1)動画視聴、AR/VR、IoTの普及により通信トラフィックが大幅に増大
- (2)低遅延時間を必要とする、自動運転、遠隔医療、工場監視等のミッションクリティカルアプリケーションが普及拡大見込み

■課題解決手法と本研究開発

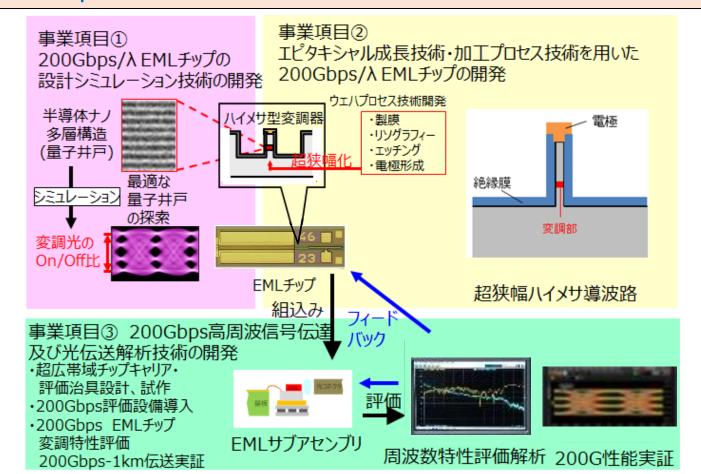
ポスト5Gモバイルネットワーク等における通信容量拡大、超低遅延アプリケーションで使用されるモバイルエッジコンピューティング(MEC)を実現する、200Gbps/λ EMLチップを開発

10 T Link Speed (b/s) 1T 400G 200G 100G 50G **5G**用 25G 2000 2030 **Standard Completed** Ethernet Speed O Speed in Development C Possible Future Speed 出典元: https://ethernetalliance.org/wpcontent/uploads/2020/03/EthernetRoadmap-2020-Side2-FINAL.pdf ※ 赤い図形、赤文字は当社が加筆

図. 本研究開発の社会実装イメージ

図. 光通信高速化のロードマップ

1. 事業概要


■本研究開発の事業内容

200Gbps/λ EMLチップや周辺技術の開発

事業項目① 200Gbps/λ EMLチップの設計シミュレーション技術の開発

事業項目② エピタキシャル成長技術・加工プロセス技術を用いた200Gbps/λ EMLチップの開発

事業項目③ 200Gbps高周波信号伝達及び光伝送解析技術の開発

1. 事業概要

表. 研究開発目標

No	事業項目	目標
1	200Gbps/λ EMLチップの 設計シミュレーション技術の開発	 ■ 周波数応答3dB帯域幅≥60GHz ● 200Gbps変調時のON/OFF比≥5.5dB が得られるチップ構造の設計
2	エピタキシャル成長技術・加工プロセス技術を用いた 200Gbps/λ EMLチップの開発	 ■ 周波数応答3dB帯域幅≥55GHz ● 200Gbps変調時のON/OFF比≥5.5dB ● 200Gbps変調の実現
3	200Gbps高周波信号伝達及び 光伝送解析技術の開発	サブアセンブリ目標性能 ● 周波数応答 3 d B帯域幅 ≥ 5 5 G H z ● 2 0 0 G b p s − 1 k m伝送の実証

2. 事業成果: ①200Gbps/λ EMLチップ設計シミュレーション技術

■EMLチップ設計シミュレーション技術の開発

- 独自のEA変調器シミュレータを開発
- デバイス特性を高精度に計算できることを実証

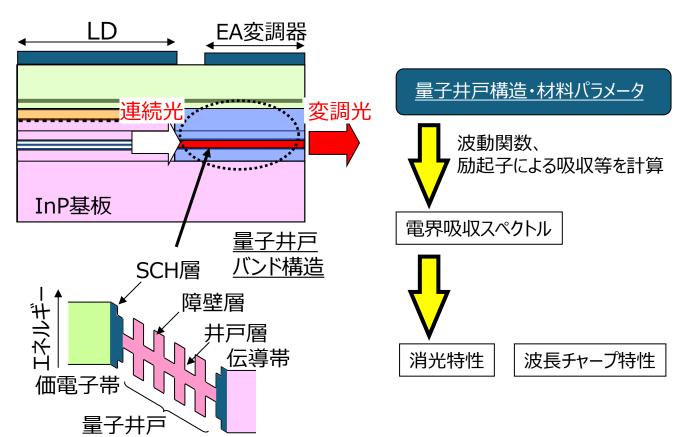
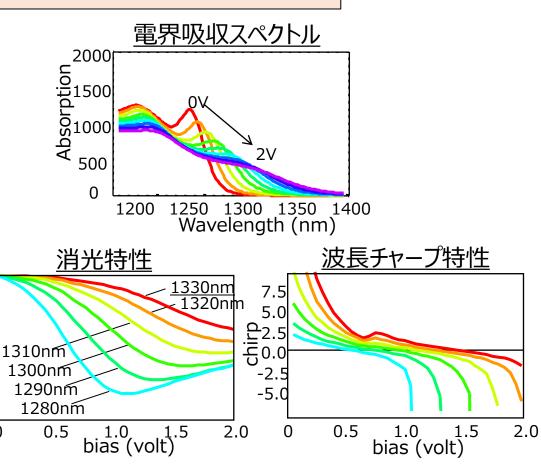
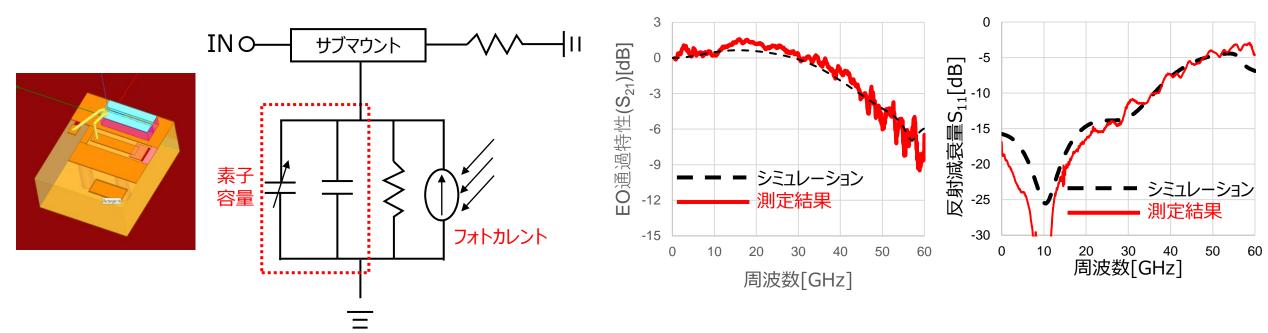



図. EML及びEA変調器の構造

図. EA変調器シミュレータの 計算アルゴリズム

開発したEA変調器シミュレータの計算結果


(gp-10

Attenuation

2. 事業成果: ①200Gbps/λ EMLチップ設計シミュレーション技術

■ EMLチップ設計シミュレーション技術の開発

- 3次元電磁界解析、等価回路モデルによる200G EMLチップの動特性シミュレーション技術を開発
- デバイス特性を高精度に計算できることを実証

(a) 3次元電磁界解析

(b) 等価回路モデル

図. 200G EMLチップの動特性シミュレーション方法

(a) 電気-光周波数応答特性 (b) 電気反射減衰量 図. 200G EMLチップの動特性シミュレーション結果

2. 事業成果: ①200Gbps/λ EMLチップ設計シミュレーション技術

■ EMLチップ設計シミュレーション技術の開発

- 開発したEA変調器シミュレータ、動特性シミュレーション技術により、200G EMLチップを設計
- EA変調器の狭メサ化により、目標性能(変調帯域≥60GHz、On-Off比≥5.5dB)達成の設計完了

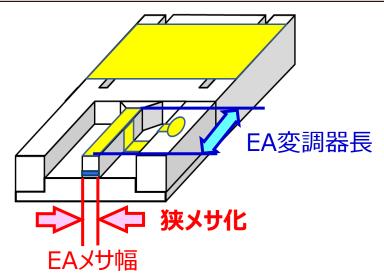


図. 200G EMLチップ構造

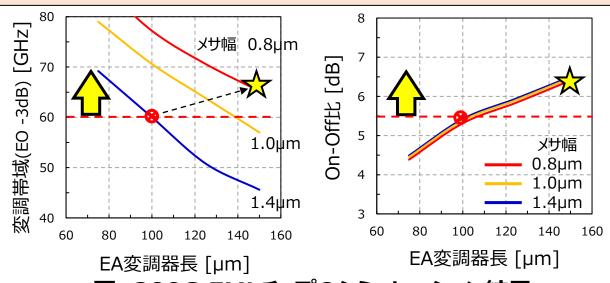
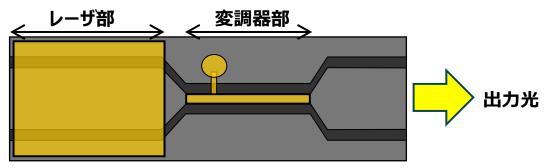
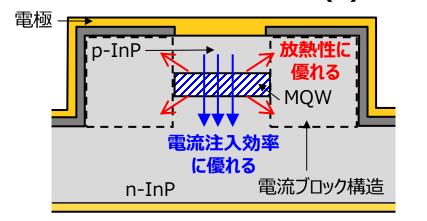


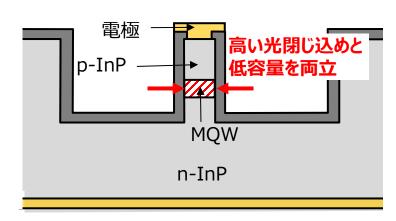
図. 200G EMLチップのシミュレーション結果


表. 200G EMLチップの設計結果

	EA変調器長 [µm]	EAメサ幅 [µm]	変調帯域 [GHz]	On-Off比 [dB]
目標性能	_	1	≧60	≧5.5
従来メサ幅	100	1.4	60.0	5.5
作木メリ幅	150	1.4	45.6	6.5
狭メサ化	150	0.8	65.2	6.4


2. 事業成果: ②200Gbps/λ EMLチップの開発

■ 200Gbps/λ EMLチップの開発


 200Gbps/λの実現のため、放熱性・電流注入効率に優れた埋込構造レーザ部、高い光閉じ込め・ 低容量のハイメサ構造EA変調器を組み合わせた、埋込ハイメサ構造EMLチップを開発

(a) チップ上面構造

(b) レーザ部断面構造

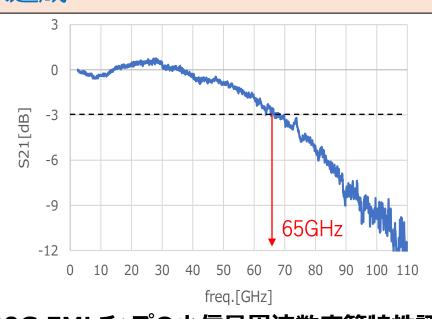

(c) EA変調器部断面構造

図. 200G EMLチップ 構造

2. 事業成果: ②200Gbps/λ EMLチップの開発

■ 200Gbps/λ EMLチップの開発

- 開発シミュレーション技術で設計した、狭幅ハイメサ導波路を持つ埋込ハイメサ構造EMLチップを製作
- 変調帯域65GHz(目標≥55GHZ)、On-Off比5.8dB(同≥5.5dB)の200Gbps変調を実現し、 目標達成

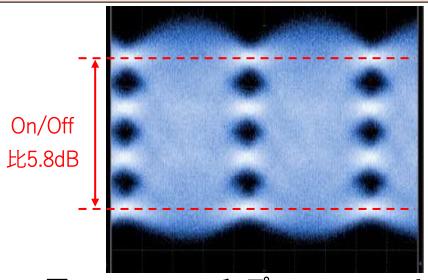


図. 200G EMLチップの小信号周波数応答特性評価結果

図. 200G EMLチップの226.875Gbps (113.4375Gbaud PAM4)変調評価結果

表. 200G EMLチップの評価結果

	EA変調器長 [µm]	EAメサ幅 [µm]	変調帯域 [GHz]	On-Off比 [dB]
目標性能	_	_	≧55	≧5.5
仕様·評価結果	150	0.8	65	5.8

2. 事業成果: ③200Gbps高周波信号伝達·光伝送解析技術

■200G高周波信号伝達技術の開発

- 200Gbps EMLチップを実装するサブマウントを開発
- 信号線路の構造を縦型から横型にしたサブマウントで、80.4GHzまで周波数応答帯域を改善

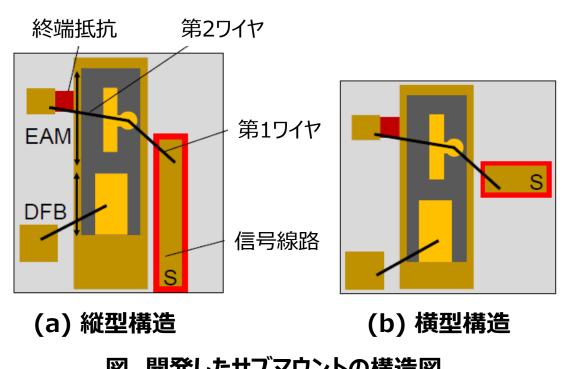
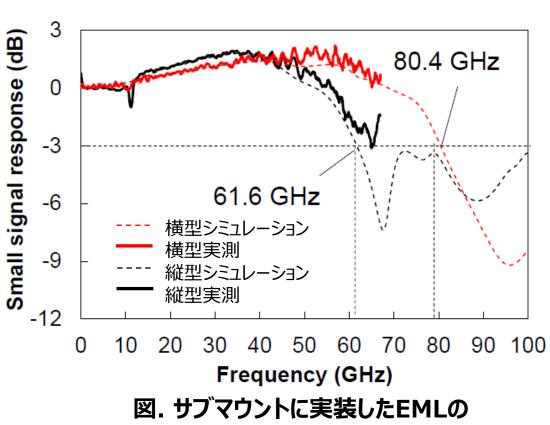
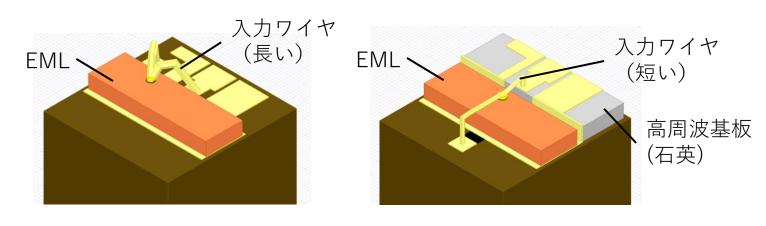



図. 開発したサブマウントの構造図



小信号周波数応答特性

2. 事業成果: ③200Gbps高周波信号伝達·光伝送解析技術

■200G高周波信号伝達技術の開発

- ・ 段差有りサブマウントによる入力ワイヤ短尺化で、周波応答帯域を更に改善
- 106GHzの周波応答帯域を実現し、目標(≥55GHz)達成

(a) 段差無し横型サブマウント (b) 段差有り横型サブマウント 図. 開発したサブマウントの構造図

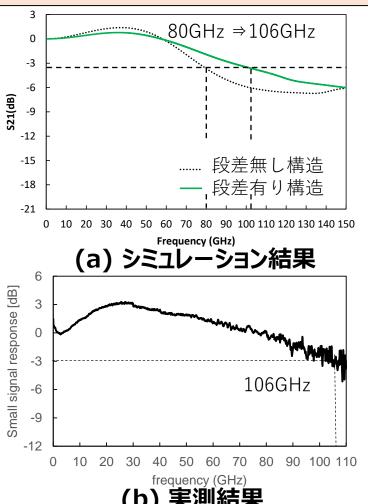


図. サブマウントに実装したEMLの小信号周波数応答特性

2. 事業成果: ③200Gbps高周波信号伝達·光伝送解析技術

■光伝送解析技術の開発

- 安定した評価が可能なサブアセンブリを開発
- 光伝送評価系を構築
- 開発したEMLチップで目標の200Gbps-1km伝送(実績2km)を達成

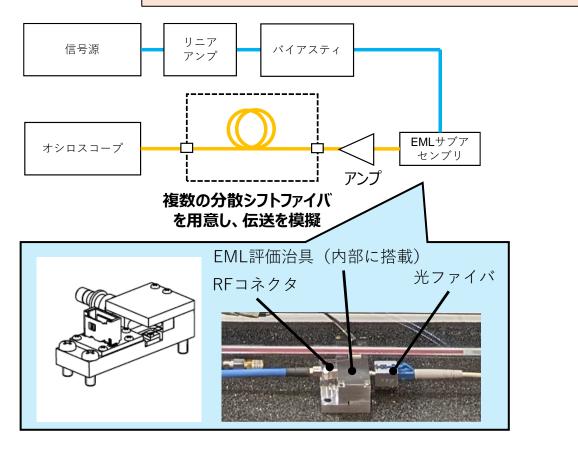


図. 開発したサブアセンブリ、及び、光伝送評価系

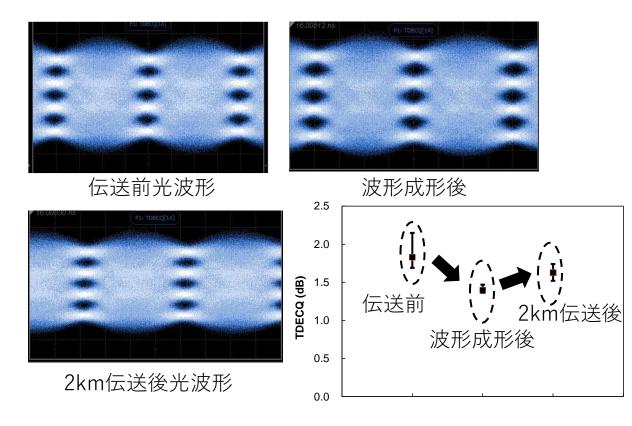


図. 石英系材料を用いたサブマウントに実装した EMLチップの200Gbps PAM4光波形評価結果

2. 事業成果: 目標達成状況

■開発目標達成状況

全ての目標達成

表. 研究開発目標と事業成果

No	事業項目	目標	事業成果(実績)
1	200Gbps/λ EMLチップの 設計シミュレーション技術 の開発	 ● 周波数応答3dB帯域幅≥60GHz ● 200Gbps変調時のON/OFF比≥ 5.5dB が得られるチップ構造の設計 	目標達成 ● 周波数応答3dB帯域幅=65.2GHz ● 200Gbps変調時のON/OFF比=6.4dB が得られるチップ構造の設計完了
2	エピタキシャル成長技術・ 加工プロセス技術を用いた 200Gbps/λ EMLチップの 開発	 ■ 周波数応答3dB帯域幅≥55GHz ● 200Gbps変調時のON/OFF比≥ 5.5dB ● 200Gbps変調の実現 	目標達成 ● 周波数応答3dB帯域幅=65GHz ● 200Gbps変調時のON/OFF比= 5.8dB ● 200Gbps変調の実現
3	200Gbps高周波信号伝達及 び 光伝送解析技術の開発	サブアセンブリ目標性能 ● 周波数応答 3 d B帯域幅 ≥ 5 5 G H z ● 2 0 0 G b p s − 1 k m伝送の実証	目標達成 サブアセンブリ ● 周波数応答3dB帯域幅=106GHz ● 200Gbps-2km伝送の実証

3. 事業成果の社会実装イメージ

■事業成果の社会実装市場

- (1) モバイルエッジコンピューティング(MEC)、データセンター
- (2) ポスト5Gモバイルネットワーク
- 社会実装により期待されるサービス等
- (1) 自動運転、遠隔医療、工場監視等のミッションクリティカルアプリケーション、AI(人工知能)利用サービス等
- (2)超高精細動画視聴、AR/VR、IoT等

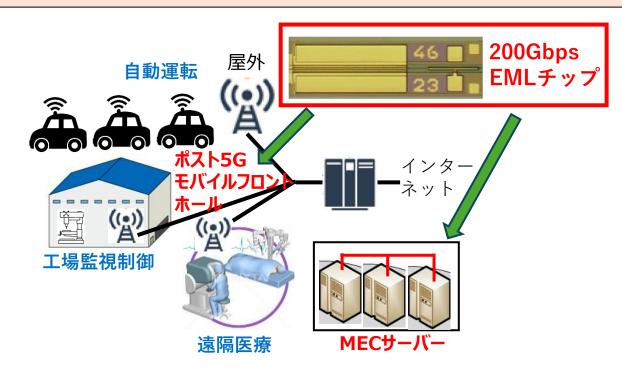


図. 事業成果の社会実装イメージ

4. 産業等への波及効果と市場獲得への施策

■産業等への波及効果

200Gbps EMLチップは、クラウドコンピューティングやAIで拡大著しいデータセンター市場への社会実装が期待される

■市場獲得への施策

- データセンター光通信市場のサプライチェーン全体でエコシステムを形成し、200Gbps EMLチップ適用と市場獲得を行う
- 大手ICPメーカーやシステム機器メーカーとの仕様議論、トランシーバーメーカーへのサンプル提供などの活動を実施

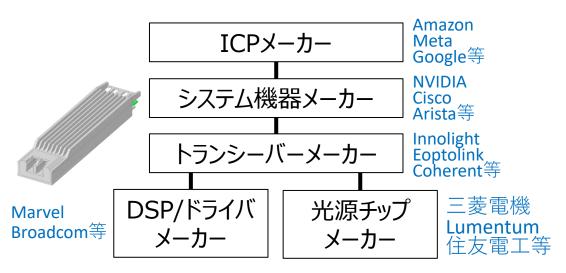


図. データセンター光通信市場のサプライチェーン

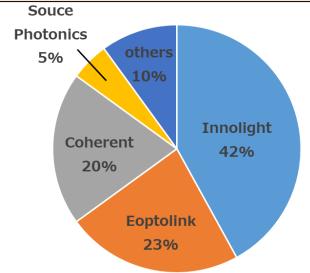


図. 高速光通信市場トランシーバーシェア (2023年、調査会社資料を参考に当社まとめ)

ICP: Internet Contents Provider、DSP: Digital Signal Processor

5. 知財、標準化への取り組み

■知財取り組み

技術の優位性を長い時間確保できるように、 200Gbps/λ光デバイスの実現・高性能化のキー技術を知財化

表. 200Gbps/λ光デバイスのキー技術に対する知財化実績

キー技術	特許の内容	特許化の実績/計画
高速化、高消光比	埋込ハイメサ型EMLチップのコア技術である埋込/ハイメサ導波路の低損失接続構造	特許化済み ・日本特許 ・米国特許
高速化	EMLチップの電極構造	特許出願済み ・PCT国際出願
高速化、高消光比	EMLチップの層・導波路構造	特許出願済み ・PCT国際出願