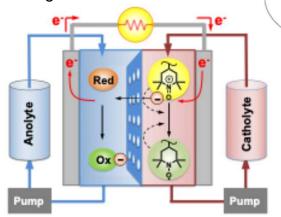
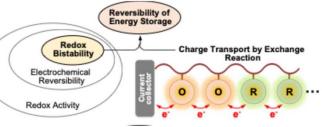
Project Title: International Collaborative Study on Next-Generation Grid-Ready Redox

Flow Battery Using Nonmetallic Charge Storage Materials (2024-2027*) *scheduled

Entrusted Party: Waseda University


Outline of the Project

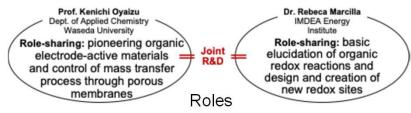

Background: There is a need to develop next-generation redox flow batteries (RFBs) for the grid to make renewables main energy sources by 2050 in order to drastically reduce greenhouse gas emissions.

Objective: Develop energy storage materials that don't rely on metals and achieve an all-organic, large capacity, and environmentally-friendly RFB.

R&D Targets: Investigate the concept of bistability related to high-rate,

high-density charge and ion storage by organic polymers and create innovative electrolyte solutions for organic RFBs.

Bistability: highest form of redox activity. Continuous exchange reactions in bistable organic materials lead to reversible, high-density energy storage.


Nonmetallic, All-Organic RFB: batteries using bistable redox polymer solutions and nanoparticle colloidal dispersions as flow active materials.

Significance of International R&D

Nonmetallic, organic RFBs cannot be acheived without international collaboration because:

- 1. Medium- to large-scale demonstration is necessary for real-world social implementation
- 2. Redox bistable materials need to be standardized and new types developed

IMDEA has expertise designing and synthesizing related materials and is therefore an ideal partner for international joint R&D.

Project Scheme NEDO Funding Joint R&D contract Waseda University IMDEA Energy Institute Spain

Expected Outcomes

Practical applications in 2040 and beyond

- Reduce reliance on rare earth elements through international establishment of large-scale organic energy storage technology
- Predicted <u>CO₂ reduction</u> of 10 million tons per year

Expected RFB characteristics

- Safe: will use neutral aqueous electrolytes that have low environmental impact, are non-toxic, easy to dispose of and replace, and don't need acid resistance for electrode, cell and tank materials
- Low cost: under 5,000 yen/kWh
- High performance: energy density over 300 Wh/kg, over 10,000 charge/discharge cycles
- Scalable: materials and large-scale cell demonstration with stable electrolytes and shelf life over one year