NEDO燃料電池・水素技術開発ロードマップ成果報告会

NEDO 燃料電池・水素技術開発ロードマップ (FCV・HDV 用燃料電池技術開発) FCスタック (アカデミアWG)

プレゼンター:竹内仙光(FC-Cubic)、陣内亮典(豊田中央研究所)、柿沼克良(山梨大学)、 川上 浩良(東京都立大学)、井上 元(九州大学)、今井英人(FC-Cubic)、塚本貴志(みずほR&T)

> NEDO 水素・アンモニア部 (委託先)みずほリサーチ&テクノロジーズ株式会社

資料構成

- 1. FCアカデミアWG 体制・実施内容
- 2. ロードマップおよび解説書の主な追加・変更箇所
 - ✓ 2035年頃の材料物性目標の検討
 - ✓ ロードマップ目標に即したMEA評価手法の整備
 - ✓ 2035年頃に向けた材料開発
 - 電極触媒
 - 電解質材料
 - ガス拡散電極
 - MEA
 - ✓ 評価·解析技術
- 3. まとめ

FCアカデミアWG 体制

*² 2023年度なで

FCアカデミアWG 実施内容

- ① 2035年頃のFCV/HDV目標を踏まえたFC材料物性目標の検討
- ② 2035年頃に向けた材料開発課題の検討
- ③ 材料の研究開発の加速にむけたDX活用の議論
- ④ 材料開発・解析技術開発ニーズの落とし込み
- ⑤ 上記を踏まえたロードマップ・解説書の更新・改訂

昨年度はHDV目標に対応する項目などを中心に実施し、 今年度はFCV目標に対する項目などを中心に実施した 本日は昨年度中間報告からのアップデートを中心にご報告する

ロードマップの主な追加・変更箇所

FCV・HDV用燃料電池技術開発ロードマップ(FCスタック[1/2]) 現在 2025年頃 2030年頃 2035年頃 2040年頃 2030年目標 2035年目標 2040年日標 I-V要求性能(1セル) BOL:0.77V@1.63 A/cm2 BOL:0.761V@2.18 A/cm² BOL:0.86V@2.29 A/cm2 EOL:0.72V@1.76 A/cm2 EOL:0.706V@2.37 A/cm2 EOL:0.81V@2.44 A/cm2 -30°C~125°C -30°C~12 温度範囲(膜面) ~90-95°C -30°C~120°C 耐久性 50.000 h 50.000h 50.000h 2035年FCVの白金 主要材料目標*1 担持量について追記 FCV:0.1 mg/cm² 空気極Pt目付量 0.17 mg/cm² 0.20 mg/cm² HDV:0.178 mg/cm² 空気極触媒質量活性 500 A/g @80℃, 100%RH 1,740 A/g @80°C, 100%RH 4,630 A/g @80°C, 100%RH 39.000 A/a Pt溶解速度 1倍 1/2倍 1/30倍 電解質膜厚さ 5µm 8µm 1um 0.12 S/cm @80°C, 80%RH 0.106 S/cm @80°C, 80%RH 0.15 S/cm @55°C~125°C, 0.05 S/cm @120°C, 30%RH 電解質プロシ伝導率 0.018 S/cm @120°C, 30%RH 0.032 S/cm @120°C, 30%RH 12%RH がス拡散抵抗 67 s/m @80°C, 80%RH 28 s/m @80°C, 80%RH 26 s/m @80°C, 80%RH 26 s/m @80°C, 80%RH 目標達成に向けた 技術開発課題*2 材料系*3 低温作動、 高耐久化技術開発、廃棄製品から (触媒) 耐久性向上、 の貫金属リサイクル技術確立、高温対 HDVとFCVの材料目 不純物耐性 応新規触媒量産化 (注) 標をほぼ同じにしたこ 科学) 類、れ もので 現行原理極限触媒(高活性·Pt容出抑制)、 現行原理極限触媒量産化 高機能アノード量産化 高機能アノード(ラジカル抑制・不純物耐性)、超高 超高耐久·高機能担体量産化 耐久·高機能担体 (@広温湿度作動) とで触媒などの開発課 非白金(酸窒化物等, 貫金属に代わる新奇表面サ小) スケーリング則打破触媒、超高耐久性・Pt 題は昨年度から大きな 新奇貴金属活性サイト、超低白金(アル加雰囲気、(単原子/数原子触媒活性サイト)) 非溶出・非白金モデル触媒 DX実装による高速・大量デー生成、トランスス MEA/触媒等評価技術確立、広温湿度領域評価 マルチモーダル解析の活用とデータベースの改良・ 変更無し 解析·計算科学·DX 材料スクリーニングと予測、計算による設計・スク ケールシミュレーション、MIによる要因分析・学理探 手法確立、高温下計測技術確立・マルチモーダル解 のキーアイテム リーニング、トランススケールシミュレーション、MIIによる 索·現象解明 析技術の確立とデータベース設計、計算こよる設 計・スクリーニング、MICよる材料候補の提示、自 材料候補の提示、自動・自律実験による探 索、参照データ拡充 動・自律実験による探索、参照データ拡充

ロードマップの主な追加・変更箇所

解説書の主な追加・変更箇所

2.5 FC 材料目標
2.5.1 材料目標の考え方
(1)2030年頃の目標
(2)2035年頃の目標
(3) 2040年頃の目標
2.5.2 材料初期物性検討のためのシミュレーションモデル
(1)電解質のプロトン伝導率
(2)空気極流路/GDL ガス輸送特性
(3)空気極触媒層ガス輸送特性
(4)空気極触媒活性
2.5.3 材料物性目標の検討
(1)2030年頃の目標
(2) 2035年頃の目標
(3) 2040年頃の目標
2.5.4 主要材料コストの目安
2.5.5 材料評価の考え方
(1)性能耐久評価
(2)電解質膜耐久評価
2.6 FC 材料開発の方向性
2.6.1 PFAS 規制
2.6.2 2030 年頃に向けた材料開発
(1)電極触媒
(2)電解質材料
(3)ガス拡散電極
(4) MEA

2.6.3 2035年頃に向けた材料開発
(1)電極触媒
(2)電解質材料
(3)ガス拡散電極
(4) MEA
(5)シール材料
(6)セパレータ・表面処理
2.6.4 2040年頃に向けた材料開発
(1)材料開発の方向性の考え方
(2)材料開発の加速手段や取り組み方法
(3)カソード触媒材料
(4)電解質膜材料
(5)他の材料・部材
2.6.5 評価・解析技術
(1)材料・プロセス探索加速のための DX 技術
(2)現象・機構解明(高度解析)
(3)現象・機構解明(計算科学)
(4) ロードマップ目標に即した MEA 評価手法の整備
2.6.6 人材育成

主な変更箇所を色付けして表示

材料物性目標							
	要素	物性	Gen2	203X	2035	2040	
	空気極触媒	Pt目付 (mg cm ⁻²)	0.17	0.20	HDV: 0.18 FCV: 0.10	0.12	
		触媒層厚さ (μ m)	7.5	6.0	6.0	3.6	
		BOL 質量活性 (A g⁻¹@80℃・100%RH	500	1740 [×3.4]	4630 [×8]	39400	
		EOL 質量活性 (A g ⁻¹ @80℃・100%RH	-	348	HDV: 1088 ^a FCV: 2273 ^a	9968	
		BOL 酸素拡散抵抗 (sm ⁻¹) [界面抵抗成分]	9.1 [×1]	10 [×1]	HDV: 10 FCV: 13 [界面物性×0.9]	8 [×1]	
		Pt溶出速度	× 1	× 1	×1/2	×1/30	
	電解質膜	厚さ(µ m)	8.5	8	5	1	
		プロトン伝導率@120℃・ 30%RH (mScm⁻¹) ^b	18	32	50	150 ^e	
	流路・GDL	酸素拡散抵抗 (sm⁻¹) ^c	58.3 ^d	18	16 [×0.9]	18	
		GDL/セパ、セパ/セパ等 : 接触抵抗合計 (Ωcm²)	-	0.0065	0.0065	0.0004	

a.HDV耐久性50000時間相当,FCV耐久性10000時間相当,b.電解質膜プロトン伝導率は補強材・クエンチャ導入後の値,c.流路・GDL込みで達成する目標値.d.並行流路での測定結果.e.120℃12%RH

2035の材料目標を提案(HDV目標を達成できればFCV目標を満たす見込み)

2035年頃に向けた材料開発: 電極触媒

11/20

D.S.R.Rocabado et al.SN Appl. Sci. (2019) 1485

高活性結晶面を利用した形態制御の積極活用

2035年頃に向けた材料開発: 電極触媒

電解質膜とアイオノマーの目標物性

2035年目標値

	膜 <	膜厚 (μm)↩		4	5.0∢	8.5←	25∉	Chemours↩
		H ⁺ 伝導率	at 120℃, 20%RH<	0.028	¢	÷	÷	Nafion™↩
		(S/cm) 🚽	at 120℃, 30%RH↩	0.050	÷	0.018	0.016	NR211↩
		※1 ←	at 100℃, 40%RH	0.057	÷	0.027	0.024	※9 ←
			at 80℃, 80%RH4	0.135	÷	0.106	0.086	
			at -30℃, 0%RH ※ 2↩	今後設定↩	¢	★←	*	
電	F	H ⁺ 伝導率	at 120℃, 20%RH	0.028	÷	¢	÷	<₽
℃		(S/cm)↩	at 120℃, 30%RH4	0.050	¢	←	*	Chemours↩
		€ ³	at 100℃, 40%RH<	0.057	¢	←	*	Nafion™↩
			at 80℃, 80%RH↩	0.135	¢	←	*	D2020←
			at -30℃, 0%RH※2↩	今後設定←	÷	¢	÷	触媒層抵抗
	1	空気極触媒層	at 120℃, 20%RH<	÷	0.147	÷	÷	※9 ↩
	オ	抵抗(Ωcm²)↩	at 120℃, 30%RH<	¢	0.083	0.77	0.37	
	1		at 100℃, 40%RH4	¢	0.073	0.41€	0.24	
	▼		at 80°C, 80%RH↩	¢	0.030	0.10	0.060	N
	Ľ		at -30℃, 0%RH※2↩	今後設定ぐ	今後設定↩	÷	÷	₽

電解質膜のH+伝導率はクエンチ剤、補強材込みの状態で達成しなければならない

2035年頃に向けた材料開発: 電解質材料

電解質膜の薄膜化 Roll to Roll による膜製造 電解質膜材料,補強層, クエンチ剤を複合化した電解質薄膜をRoll to Rollで作製

DX、自動自律機を活用した電解質膜開発の加速

電解質膜材料:フッ素系高分子、炭化水素系高分子

GDL単体としての酸素輸送抵抗はほぼ目標達成。流路構造との組み合わせを考慮し,抵抗を低減する必要

2035年頃に向けた材料開発: MEA

触媒層作製プロセスの高度化 (2)触媒層の輸送抵抗の低減 $(\mathbf{1})$ (b) Uniform coated ionomer 厚さ,空隙率,比表面積,分散,凝集粒子径 ● Pt近傍のアイオノマー内 プロトン伝導性,酸素拡散性,みかけ触媒活性を左右 /界面O₂輸送抵抗の低減 分散・ 触媒層 触媒層 インク 担体細孔内の輸送抵抗低減 圧着 調製 混錬 塗布 飭燥 ● アイオノマー分布や被覆 Ununiform coated ionomer (hydrophobic shap 形態制御による輸送性向上 ● 各工程の現象理解 PI等、データ駆動によるプロセス最適化 酸素、プロトン、電子の 円滑供給のための構造設計 各工程の現象解明や新たな製造工程の検討も必要 J.Power Sources 327 (2016)1-10 ③MEAの必要特性の検証 ④触媒層構造の設計工夫 **High surface** Low surface roughness Chem.Sci.,13 (2022) 6782 roughness GDL design **GDL** design RDE[∉](c) 電解質膜、触媒層、GDL、 Anode Cathode ●触媒活性の差異のゆ WE シール部材の組み合わせ 要因解明が必要 Gas 薄膜化による、他部材の bubbler ●互いの補間に必要 必要剛性・表面粗さ変化 な因子の抽出 100 µm Membrane crack 物質輸送性,保水性 development under マルチモーダル解析やオペランド解析等の各種計測技術の高度化 GDL voids 電子伝導性,機械強度,耐久性 シミュレーションによる現象解明と最適設計 J.Power Sources 512 (2021)230446

触媒層内の酸素輸送抵抗の低減,作製プロセスの高度化,必要特性の検証と最適化,内部現象解明が必要

評価·解析技術

17/20

ハドロン実験施設

大強度陽子加速器施設(J-PARC

- SPring-8-IIへのアップグレードが決定し、NanoTerasuの稼働するなど、日本の量子ビーム研究施設の能力が 増強されている。中国勢の追い上げをかわし、欧米を追い越し、トップの性能へ。
- MEIによるDX化と施設のポテンシャルを最大化する計測・解析手法の開発により、課題解決型の解析を行える環 境を整備し、35年/40年課題解決に貢献することで日本の競争力を強化

https://new.spring8.or.jp/images/spring8/spring8-2/symposium y3.pdf

「SPring-8-II シンポジウム 概要説明資料 (2024年8月2日)」より抜粋

8GeVシンクロトロン

評価·解析技術

◆ 35年課題に設定されているプロセス解析やシール材料・セパレータ材料の解析にも活用できるように進める

開発時期	目標値	触媒	電解質膜 アイオノマ	GDL/MPL MEGA	生産技術	産業界ニーズ
2025~ 2030年	電解質膜:厚さ8µm プロトン伝導率:0.032 @120℃,30%RH 触媒層厚さ:8µm 触媒目付:0.02 比活性:1,740 酸素輸送抵抗:10 S/m 分子拡散抵抗:18 S/m	 ・高温耐久触媒(120℃) →触媒表面における水可視化 →劣化要因の体系的解析 →120℃運転での非定常状態の可視化 →界面:カーボン・アイオノマ、カーボン表面(高温挙動) →イオン液体の結合状態 →高温環境下における計測技術の確立 →過渡現象の解析 	 ・高温耐久電解質膜 120℃以上,30%RH条件下での プロトン輸送解明 膜の相分離(酸官能基の状態)、膜 内の水の状態 ダイナミックな計 測 ・薄膜化 断面相分離構造:温度・湿度相関 水の分布状態:温度・湿度相関 薄膜化による変化、制御 →高温における解析環境の構築 	・高温化 ・薄GDL化 ・触媒層構造最適化 ・ガス(水蒸気)の解析	 ・生産プロセスの現象解析 ①触媒層形成プロセス ②エージング ・材料開発への適用 ③高耐久セパレータ ④シール材料 	 ・産業界による解析PFの活用 現PF利用可能技術の展開 産業界ニーズ ・電極内での水挙動可視化 ・アイオノマー被覆状態可視化 ・高電位による触媒劣化の影響 評価 ・MEA活性とRDE活性 ・電解質膜の耐久性 ・材料表面物性の耐久性
2030~ 2035年	電解質膜:厚さ 5µm プロトン伝導率 0.066 S/cm@120℃, 30%RH 触媒層厚さ:6µm 触媒目付:0.18 mg/cm2 比活性:4630 A/g 酸素輸送抵抗: 10 S/m 分子拡散抵抗: 16 S/m	 ・新材料開発 微粒化・ナノクラスタ、規則化合金、 高エントロピー合金、高融点合金、 有機修飾、C・C・Nコート、高耐久 メソ孔担体、酸化物担体 → 触媒反応メカニズム解析 → RDE vs MEA(イオン液体など 新規アイテムの現象解析) → 高度な材料解析の実現 	 ・新材料開発 HC系、ホスホン酸系ポリマ、ナノファイバ、コンポジット膜、高 HOPIアイオノマ、アニオン膜 ・PFAS規制対応 炭化水素系電解質構造一性能相 関ライブラリ(スタンダード系) ・新材料に対応するクエンチャ開発 →MIに対応できる計測技術 	・理想的触媒層の構造	・PIによる触媒層プロセス最 適化 ・工程検査 →PIに対応可能な計測技術・ DX技術	・不純物の影響評価 ・高温での担体耐久性 ・EOLまでの触媒層構造変化
2035~ 2040年	電解質膜:厚さ1µm プロトン伝導率: <u>0.15@55</u> ~125℃,12%RH以上 触媒層厚さ: 4µm 触媒目付:0.120 比活性:39,000 酸素輸送抵抗: 8 S/m 分子拡散抵抗: 18 S/m	・MIによる革新的触媒開発 →DX実装による高速・大量デー タ生成	・MIによる革新的電解質膜開発 ・PIによる電解質膜合成(製膜) ・120℃以上, 12%RH条件下で のプロトン輸送解明 膜の相分離(酸官能基の状態), 膜 内の水の状態 →オペランド計測+DX技術	・革新材料に対応する触 媒層の最適化	・新規材料に対応するプロセ ス最適化、システム化 →プロセスや触媒層構造の 最適化が可能な計測疑似術	
包括的な 取組		・高温環境下における反応、およ び、触媒(触媒層)劣化要因の体系 的解析	・炭化水素系電解質膜の構造・物 性・性能相関ライブラリ作成 ・非フッ素系劣化の要因解析(スタ ンダード系)	・劣化予測技術 ・大視野/高分解能測定や マーカー的解析活用によ る劣化起点の計測	・生産技術への高度解析適用 ・触媒インク、インク乾燥過程 のオペランド計測を含むPI	・イメージング・DX/シミュレー ション技術 ・AIによる画像解析

ロードマップ目標に即したMEA評価手法の整備

19/20

加速耐久評価条件(AST)

用途別FC運転温度頻度分布

図 2.2.3-4 FC 水温の時間分布

FCV・HDV用燃料電池技術開発ロードマップ(解説書)(2024年3月)

【2023年版公開】NEDO PEFCセル評価解析プロトコル

高温運転の影響を考慮したASTが必要

電極性能評価手法

M. Inaba et al. Energy Environ. Sci., 2018,11, 988

K. Ino et al. ECS Meet. Abst. MA2014-02 (2014) 1165 T. Suzuki et al. J. Power Sources 222 (2013) 379

燃料電池ベンチが無くても、電極材料評価可能な手法 燃料電池材料研究への参入障壁低減

ロードマップの高温運転を考慮した性能・耐久(AST)の評価条件や 燃料電池ベンチに頼らない電極材料評価手法の構築が必要

- ▶ 2035年頃のFCV/HDV目標を踏まえ、2Dシミュレーションを用いて 材料物性目標を試算・提案
 ⇒ FCV/HDVの違いは白金担持量のみとし、目指すゴールを一本化
- ▶ 2035年頃に向けた材料開発課題の検討を中心に、材料の研究開発の加速にむけたDX活用の議論、材料開発・解析技術開発ニーズの落とし込み、などについてRM本紙・解説書に反映