Monitor **Deloitte.**

Attn: NEDO Thailand

Study on Policy Recommendation for

Biofuel in Indonesia Phase 3

Final Report Deloitte Consulting Southeast Asia

30 August 2024

Agenda

- 1 Executive Summary
- 2 2G Ethanol Commercialization Roadmap
- 3 Identification of Potential Feedstock Including Collection Methods
- 4 Expansion of Ethanol Use by FFV Introduction
- 5 Updated Demand-Supply Balance
- 6 Realization of Reasonable Production Cost
- 7 Appendix

Executive Summary

As long as the price difference between bioethanol and gasoline is large, it will be difficult to achieve an acceptable price with subsidies that can be assumed at present, and it is essential to <u>consider expansion measures on both supply and demand sides</u> to reduce costs

Executive summary

To establish a bioethanol market in Indonesia, it is necessary to clarify the Indonesian government's position on both supply & demand. To move him in this direction, it is essential to appeal the benefits of introducing ethanol through the TF activities

Executive Summary for Phase 3

Theme		To consider expansion measures on both supply and demand sides to reduce costs
Conclusions		The theory of economies of scale will enable 2G cost reduction and Ethanol market establishment
	Supply	If the government clarifies its policy position on bioethanol expansion, it will drive the development of 2G, resulting in a significant supply from EFB and Bagasse
	Demand	If the Government shows a strong willingness to promote the introduction of FFVs as part of its decarbonization policy and offers tax incentives for both producers and consumers to introduce FFVs, significant demand for FFVs can be expected.

	Towards stable supply	Towards increasing demand
Re-confirmed	Interviews with several experts reconfirmed that commercialization of 2G ethanol by EFB is highly feasible among palm oil residues	A simple estimation of the demand when FFV is introduced in Indonesia showed that, as initially expected, a very large increase in demand is expected
Found out	Based on interviews with experts, 2G commercialization is on track for about 2030. With the additional sugarcane farmland, 2G using bagasse is expected to produce a significant amount of ethanol.	Interviews with local experts in Brazil on the success factors in Brazil at the time suggest that the entire industry shifted to FFV under the strong will of the government, with the public and private sectors working together.
Challenges	Indonesian government needs to clarify its policy position on bioethanol expansion Possibility of using palm oil residues other than EFB should be explored to secure more supply.	The degree of penetration of FFVs will depend on whether the Indonesian government continues to promote EVs in the future, changes its policy to promote FFVs for the time being, or tries to coexist with them.

Based on the interviews, it is assumed that if the Indonesian government can implement and provide policy position on the necessary drivers, 2G Ethanol commercialization is expected to be realized by 2030

2G Ethanol Commercialization Roadmap

Ethanol's commercial viability are hindering large-scale funding from private and public sectors

technological limitations, make 2G Ethanol less competitive, with costs exceeding 1G price

feedstock, are driving up demand and costs, while also limiting its availability for ethanol

poses a major barrier to the adoption and competitiveness of 2G Ethanol in Indonesia

Funding Support and Incentives	Enhanced Supply Chain and Logistics	Innovation and Technology
• Increase project funding and support, offer low-interest loans, and waive import tariffs for 2G ethanol production	Optimize plant locations and establish downstream facilities near key markets to reduce transportation costs	• Accelerate pre-treatment efficiency and simplify production processes to reduce time and costs
 Implement a regulated pricing tier for 2G ethanol to encourage investment and commercialization 	 Secure cost-effective feedstock through strategic partnerships and strengthen supply relationships to improve efficiency 	 Invest in advanced research and innovations to improve techniques and reduce enzyme costs

Drivers to Address Issues

2G could be commercialized by 2030 if the government clarifies its policy position on ethanol expansion

© 2024 Deloitte Consulting Southeast Asia

Summary of suggestion

Beyond 2G ethanol from EFB, additional farmland for sugar self-sufficiency (700,000 hectares, 2 million hectares) will provide not only additional 1G ethanol from molasses, but also a significant amount of 2G ethanol from bagasse.

Identification of Potential Feedstock

Conservative scenario (Million Liter) 18,000 Sugarcane Molasses 16,500 15,000 Sugarcane Bagasse 13,500 EFB 12,000 10,100 10,100 10,100 10,500 9.038 3,648 9,000 4,807 7,663 **3,316**2,4221 3,562 3,562 3,562 2,855 7,500 6,431 [2,303 756 2,5191 ⁻2,294 6,000 469 1,300 647 406 3,476 3,476 3,476 4,500 2,932 366 155 2,388 3,000 1,844 1,500 3,062 3,062 3.062 0 2023 2024 2025 2030 2035 2040 2045 2050 2055 2060 The assumption is that the required amount for existing uses Molasses will be kept constant, and any additional molasses expected in the future will be fully allocated to fuel ethanol. Assumption that **50%*** of the residues after sugarcane pressing throughout the country will be allocated to fuel Bagasse ethanol.

Assumption that **20%**** of the country's total EFB is allocated to fuel ethanol

<u> Maximum scenario (Million Liter)</u>

*Since there is no national target for bagasse use in other industries or for export in Indonesia as of now, the use rates of 50% and 100% are used for the calculation purpose, in detail refer to P71

**Since there is no national target for EFB use in other industries or for export in Indonesia as of now, the use rates of 20% and 40% are set based on the information from BRIN, in detail refer to P82

Sources: Deloitte Analysis

EFB

Summary of suggestion

Successes like Brazil's are possible if the government prepares and strongly promotes incentives for private companies like OEMs and consumers to introduce/purchase FFVs as part of its policy toward decarbonization

Expansion of Ethanol Use by FFV Introduction

What is needed to achieve the same success as in Brazil.

Strong Government Support Across Market Participants

- Government involvement drives investment and innovation in new technologies like FFVs
- Pro-Ethanol and FFV policies are essential in addressing entry barriers, including high production costs

Competitive Pricing and State Propaganda

- Lower fuel costs and reduced taxes made FFVs appealing to consumers
- Targeted campaigns effectively communicate the economic and environmental benefits of FFVs, encouraging public adoption

Summary of suggestion

It is necessary to consider cost reduction after examining the ideal portfolio for the entire ethanol industry, including not only the palm oil residue industry but also other feedstocks such as bagasse.

Realization of Reasonable Production Costs

- The market price of ethanol in Indonesia is high compared to other countries because the volume of ٠ ethanol distribution itself is low at this time. Hypothesis .
 - In the future, when both supply and demand grow significantly, significant reductions in production costs can be expected based on the theory of economies of scale

Sources: 1) Source of Data for Ethanol Production is Country Biofuels Report from United States Department of Agriculture, 2) Source for Market Price as follows, USA – US Grains Council, Brazil – Brazil Biofuel Report USDA. India – The Economic Times. Thiland – Krunasi Bank Ethanol outlook. The Philippines – Department of Aariculture. Indonesia – IntraTec Ethanol Prices

2G Ethanol Commercialization Roadmap

Raizen and GranBio are the leading players in 2G Ethanol, with Raizen currently partnering with Shell, a major oil company, to expand its market

2nd Generation Plants in Brazil

		raíz	sen —→	in collaboration with
Area	Alagoas, Brazil	Piracicaba, Sao Paulo, Brazil	Guariba, Sao Paulo, Brazil	
Tech	(2G) AVAP technology	(2G) logen Energy's advanced cellulosic biofuel technology	(2G) logen Energy's advanced cellulosic biofuel technology	Shell
Capacity	 Processed raw material: 400,000 tons /year Production Capacity: 82 mill ltr ethanol fuel/year 	 Processed raw material: 400,000 tons /year Production Capacity: 40 mill ltr ethanol fuel/year 	 Production Capacity: 82 mill ltr ethanol fuel/year 	In a long-term contro 2037, to buy a total 3 25-billior
Feedstock	Corn StoverBagasse	Sugarcane StrawBagasse	Sugarcane StrawBagasse	cellulosic etl
Status	(2014 – Now)	(2014 – Now)	(2023 – Now)	and to build 3 cellulc
Challenge	 High plant setup cost Imported materials adding to costly supply chain Large technology investment prone to replication 	 Difficulty in maximizing ROI frequencies Cultivation of raw materials to management Lengthy process of technology Ethanol production 	rom large capital expenditure hat requires additional land gy development suited for 2G	

۱..

act until of

n-liter hanol

osic ethanol Shell

Source: S&PGlobal, Biofuel Digest, Ethanol Producer's Publications, various press releases

Internal Survey

Brazilian companies face high production and development costs, along with tariffs from importing countries protecting their domestic E2G industries

Key Challenges on 2G Bioethanol Production

Î	Plant Setup	Requires a total investment of USD 265 million, partially funded by debt from Development Bank	Difficulty in ensuring maximized Return of Investment given large capital expenditure			
	Feedstock	 Cultivation of feedstock requires harvesting large plants volume and storing facilities before transporting them to production facilities 	 Cultivation of raw materials including feedstock, requires additional land management 			
COST	Logistic	 Needs for storing and transportation adds to the needs for logistic cost and management 	 Dependency on crops availability / restrictions, often resulting to volatile feedstock price 			
	Supply Chain	Majority of key materials supplied from imports (e.g., Enzymes from Novozymes, Yeast from DSM Holland)	Utilizes enzymes from Novozymes, which operates in a monopoly market, leading to higher prices			
	International Trade	Tariffs imposition from importing countries to protect domestic ethanol producers causes Brazilian producers to set higher prices, hence deteriorating competitiveness				
ECH	Investment	Investment in 2G-specific technology ¹⁾ prone for duplication by competitors, likely to erode GranBio's competitiveness in the market	Over EUR 100 million (USD 111 million) investment in 2G Ethanol technology development			
	Development Period	Unable to identify	Lengthy development period, current technology used has been in development for 15 years			

Notes: 1) GranBio's Technology is specific to 2G, while Raizen's is integrated with 1G production; Sources: European Technology and Innovation Platform, Biofuel Digest, Ethanol Producer Magazine, Bloomberg, Reuters, International Energy Agency (IEA), Valor International 12

raizen

GranBio leveraged debt financing to fund its investment and patented its 2G technology, generating additional income through commercialization and licensing

Sources: European Technology and Innovation Platform, Biofuel Digest, Ethanol Producer Magazine

Internal Survey

Aware of substantial investments and high production costs, Raizen targets customers willing to pay premium price for high quality ethanol

Key Challenges on 2G Bioethanol Production for Raizen

	<u>< co</u>	ST	← <i>TECH</i> →
Key Challenges	1 High cost of production with uncertain returns / revenues	Tariff implementation from major importing countries	3 Long time taken to develop appropriate 2G technology
אבי אר וssues What are the issues identified in 2G Ethanol production?	 Enzyme costs that account for ~ 35 – 50% production cost is sold under a monopoly market by Novozymes, often priced higher, further compounding to total costs Cultivation of raw materials (i.e., quality feedstock) that requires additional land management 	 Growth in 2G industries in importing countries prompts local governments to impose tariffs on Brazilian ethanol to protect local producers Imposition of tariffs is likely to deteriorate price competitiveness of 2G ethanol produced by Raizen 	 Long development time of technology to use for 2G production The technology that Raizen uses today has been in development for over 15 years
Initiatives What are the measures taken to address the obstacles?	 Sell output under a long-term contract to plant's output is sold under long-term co (including Shell) hence providing security Focus on customers willing to pay premium Confident on its quality and demand, Raiz at a 70% premium compared to convention Raizen sources raw materials efficiently by to increase the area under cultivation 	dedicated buyers: 91% of the new ntracts with global energy players to produce as it secures revenues m, and pass high costs to price charged: zen is currently selling their 2G ethanol onal ethanol	 Optimize investment by building multiple plants and increasing production capacity, leveraging the same technology Partner with leading player to deliver best-practice tech: Raizen uses technology developed by Logan Energy to convert bagasse into ethanol

Sources: Bloomberg, Reuters, International Energy Agency (IEA), Valor International, Biofuel Digest

For 5 years, 2G Ethanol remained < 3% of the Indian ethanol market, likely due to cost and technology constraints limiting its scalability compared to 1G production

Market Share of 1G vs 2G Ethanol in India

2G accounts for less than 3% of the Indian ethanol market

Sources: EMIS Intelligence, CoherentMI Asia Pacific Intelligence Centre

2G Ethanol plants in India utilise rice straw as feedstock, producing ~ 30 million liters annually, with major companies collaborating with Praj Industries for technology

2nd Generation Plants in India

	इंडियनऑयल IndianOil	Bharat Petroleum	pr
Area	Panipat, Haryana	Bargarh, Odisha	Both companies ard Praj Industries as th
Tech	Enzymatic Ethanol Technology, by Praj	Enzymatic Hydrolysis, by Praj	Key Features of Pra
	 Processed Raw Material: 150,000 tons per year 	 Processed Raw Material: 178,120 tons per year (488 tons per day) 	Wastewater Zero Process
Capacity ¹⁾	 Production Capacity: 36.5 mn ltr 2G Ethanol per year (0.1 mn ltr per day) 	 Production Capacity: 30 - 36.5 mn ltr 2G Ethanol per year (0.1 mn ltr per day) 	Provides E2 feedstock pr product and
Feedstock	Rice Straw	Rice Straw (12% Moisture)	Capability to
Status	2022 – Now	2020 – Now	feedstock (e
Challenge	 Uncertainty in securing sufficient feedstock amount at competitive price Extensive logistics management for 2G Ethanol production 	 High expenditure for plant set up, estimated to cost 5 times more expensive than 1G plant development Limited capability to develop end-to- end technology in-house 	Multi-produ designed to Biogas, etc. Process inte optimisation

۲

Both companies are collaborating with Praj Industries as the technology licensor

Key Features of Praj's 2G Technology:

Wastewater management for Zero Process Liquid Discharge

Provides E2E offering from feedstock processing until endproduct and waste treatment

apability to process multiple eedstock (e.g., rice straw, EFB,)

Multi-production capability, designed to produce 2G Ethanol, Biogas, etc.

Process integration for energy optimisation

Notes: 1) Assuming that a year has 365 days; Sources: Indian Oil Company Website, Praj Industries Company Website, Business Standard Economy, The Hindu Business Line, Energy EC Europe

Indian companies face challenges with feedstock acquisition and logistics costs, as well as struggles with technology development capabilities

Key Challenges on 2G Bioethanol Production

		इंडियनऑयल IndianOil	Bharat Petroleum	praj
1	Diant Cature	 Profitability for 2G Ethanol production not yet established 	 Setup delays due to high capital constraints 	
	Plant Setup	 Petrol price lower than cost of blending ethanol 	• 2G plants estimated to costs 5x more than 1G plants	Not Augilable As a company that
— COST —	Feedstock Acquisition	 Concern in securing enough rice straws at competitive price Due to seasonal availability, Indian Oil requires a large acres of land to 	Scarce availability compared to 1G feedstock, hence often comes at higher price, which adds to cost	Not Available. As a company that primarily provides licenses and on- demand services for 2G production, costs are charged to customers based on the services provided.
	Logistics	store feedstockRequires multiple parties to handle logistics, adding to logistics costs	Unable to identify	
CH	Investment Size	Unable to identify		 Focuses on providing technology, hence must heavily invests in R&D and innovation
+ ↓	Capability	 Due to complex nature of the technology, companies tend to not have the capability to develop 2G Ethanol technology by themselves Indian companies leverage external technology providers to overcome this 		 Praj invests up to USD 30 million for its in-house R&D alone Deploys > 90 technologists that adds to operational costs

Sources: The Print India, Economic Times Energy India, Bharat Petroleum Company Website, Environment Clearance India, Bioenergy International, Prajhi Purity

۲

IOCL prioritises securing competitively-priced feedstock and leverages Praj's technologies, with a government grant covering ~21% of the total investment cost

Key Challenges on 2G Bioethanol Production for IndianOil (IOCL)

•	< COST			← TECH →
Key Challenges	D Feedstock acquisition to meet production target	2 Management of logistics and land acquisition	3 Profitability not yet established	4 Limited capability to develop own technology
אַר אד Issues What are the issues identified in 2G Ethanol production?	 IOCL requires 2.1 lakh¹) tons of rice straw per year to produce ~ 100 kilo liters per day While bulk purchase offers price advantage, concern is securing enough rice straw at competitive price 	 Feedstock is seasonal; to store 1 year worth of feedstock requires 150 - 200 acres of land IOCL lacked 100 acres for storage but secured only ~56 acres from the local government 	 Cost of ethanol that is blended in petrol remains costlier than the selling price of petrol Therefore, price competitiveness remains low for customers to entirely shift to ethanol 	 Despite continued expansion in R&D, IOCL is not able to deploy an in-house 2G technology due to its complex nature
Initiatives What are the measures taken to address the obstacles?	 Locating plants within proxim Currently, a 50 km radius yie annually, which meets India Building close relationship w coordination for feedstock p Deploying a network of aggr producer organisations (FPC managers and contractors te Expanding 3 depots outside 	nity to rice straw producers: elds 8.9 lakh MT of rice straw nOil's quantity demand ith local farmers to ensure easier ourchase egators including farmer Os), truck drivers, depot or manage the logistics of plant premises for storage	 Partnership and cost sharing: IOCL and Praj agreed to form an alliance to share costs in the development of three 2G ethanol plants IOCL also received USD 18 mn from the government, covering 21% of its total investment cost²) 	 IOCL selected Praj Industries as the licensor and consultant for their 2G production in Panipat The project is based on Praj's proprietary technology to process Rice Straw as feedstock for Ethanol

Notes: 1) Lakh = hundred thousands; 2) Out of total investment cost of USD 85 million; Sources: The Print India, Economic Times Energy India

BPCL secures revenues by using its ethanol in the company's petroleum mix, while government assistance covers only about 9% of its total investment cost

Praj sells licenses for its 2G Bioethanol technology to major Indian producers to offset high R&D and innovation costs

Notes: 1) Bharat Petroleum Company Limited, 2) Indian Oil Company Limited, 3) Hindustan Petroleum Corporation Limited; 4) Mangalore Refinery and Petrochemicals Limited **Sources:** European Commission Energy, Prajhi Purity

BRIN runs a pilot plant for 2G ethanol production with Korean institutions and demonstrates ongoing involvement through various domestic and global partnerships

Current Development of 2G Production by BRIN

Overview of BRIN's 2G Bioethanol Development

Key Development

- Under a partnership with KOICA, and KIST, BRIN established a Pilot Plant for 2G Bioethanol production in Serpong, South Tangerang
- As of 2022, the production of 2G Bioethanol has achieved a purity level of over 99.6%, qualifying it as fuel-grade
- Palm oil residue used as the primary feedstock, with other types of feedstock under continued development

BRIN's 2G Ethanol Pilot Plant in Serpong, South Tangerang

Other Development

- Started **partnership with PT Bukit Asam** to study coal use for ethanol production as part of government's NZ 2060 strategy
- Received **R&D grants from Japan International Collaboration Agency** (JICA) for material development for 1G ethanol production

Source: BRIN's Publications, Kumparan Indonesia

Key Challenges

- **1** Lengthy Production Time, Due to Difficulty of Ethanol Fermentation
- Biomass is converted through long stages and process, which are considered less effective and causes high production costs

Limited Feedstock Availability from Competing Use of Palm Oil Waste

- To expand feedstock sources, BRIN is developing a **new variety of sorghum** with enhanced durability against rotting
- This project is under a collaboration with a Japanese firm (unidentified), expected for release in 2025

Pertamina is currently evaluating the construction of a 50 KTA bioethanol plant using Empty Fruit Bunch (EFB) as feedstock

Current Development of 2G Production by Pertamina

Overview of Pertamina's 2G Bioethanol Plant

Key Challenges

High Cost of Production

- Due to high production costs, ethanol has **lower competitiveness** in the market when sold as end-product (i.e., fuel)
- To tackle this, **integrated partnership** must be established **between related ministries with key players in the automotive sector**

Limited Feedstock Availability

- Competing uses for palm oil residues
- Only ~32% of palm oil residues in Indonesia can be used without causing damages to land

Limited Penalties and Subsidies

 Currently, there are no applicable penalty and/or subsidy schemes for bioethanol programmes – therefore, limiting the development and expansion of production capacity at scale

Notes: 1) Kilo Tons per Annum; **Source:** Pertamina's Presentation for the Association of Indonesian Motor Vehicle Industries (GAIKINDO), CNBC Indonesia, Indonesia Times, Jakarta Globe, International Council on Clean Transportation (ICCT)

In India, 2G Ethanol is gaining momentum as driven by growth factors, but also facing significant challenges that require strategic navigation

Drivers and Challenges in 2G Ethanol Development in India (1/2)				
Parameter	Insights		Status	
	Formula for 1G Ethanol price based on ethanol conversion factor of feedstocks and their prices in the mar	rket		
Pricing	Differential pricing for 2G Ethanol as compared to 1G Ethanol is not being considered by the government the future	in		
Ethonol Supply	The government currently has no plans for providing any preferential treatment for 2G Ethanol manufacturers			
	The ethanol supply shortfall is being planned by the government to be bridged through both 1G Ethanol (alternate sources) and 2G Ethanol			
Export Control	Export for ethanol is banned, and only allowed under specific conditions			
Incentives for	Viability Gap Funding (VGF) will be provided to 12 commercial projects for setting up 2G Ethanol plants			
Companies	Government is open to private sector participation and VGF funding to project proponents			
	A mature Agro waste aggregation market doesn't exist in the country			
Mechanism for Feedstock Collection	Government may support private companies indirectly through institutions such as NABARD / Self Help Groups, etc.			
	Collaboration between central and state governments for feedstock collection to supply ethanol manufacturers does not exist			

Government bodies, producers, and regulators are working together to address challenges, aiming to bridge gaps and position India as a global leader in bioethanol

Drivers and Challenges in 2G Ethanol Development in India (2/2)			
Parameter	Insights	Status	
Foodstock	True feedstock costs for 2G Ethanol not known with certainty		
Feedstock	Supply Chain for feedstock procurement for 2G Ethanol production is not well-established		
Transport	Inter-state movement of alcohol creates hindrances		
Long-Term Procurement Cost	The long-term contracting policy (contact of 5 years) been introduced by the government for long term offtake guarantee against capital expenditure invested by companies.		
Overall Cost	Estimated total cost of production for setting up and operating a 2G ethanol plant is extremely high		
Green/ Renewable	Carbon credits can be claimed by the project proponent, but at present there is no structured market in India for carbon trading, with just the draft version of carbon credit framework released, as of now		
Carbon Credits for Bio-Refinery	Even though Green/ renewable certificates can be purchased (implying that the power consumption in bio- refinery needs to be generated from renewable electricity), there is no policy about carbon credits/ green certificates which are specifically related to bio-refinery projects		

Å

(S)

þ

Ø

 \square

CO²

In India, technological challenges in 2G production mainly stem from the limited availability of technology licenses available at commercial scale

Technology Challenges in 2G Ethanol Development in India

Key Technological Challenges for 2G Ethanol Production

Commercial scale operation of 2G Ethanol process is only available for one technology licenser and others have demo or pilot scale experience

Higher Cost of Production: The cost of ethanol production from lignocellulosic biomass is higher than first generation ethanol, there is a need for subsidy for economic viability and competitive ethanol pricing

Commercial availability of lignin boiler: Lignin is recommended to be used as fuel in boiler and therefore the commercial availability of such applications need to be ascertained

Commercial experience of pretreatment is not available: Pretreatment forms a critical section that separates the 1G and 2G technologies

Availability of biomass: Biomass availability is dependent on proper pre-planning and essential to build the ecosystem for ensuring biomass supply

Biogas and CO₂ utilization: Finding the right consumer and/or disposal of Biogas and Co2 produced from 2G technology remains an open issue

High investment, costly production, competing feedstock demand, and a complex market structure are the key challenges in 2G market development in Indonesia

Challenges of 2G Ethanol in Indonesia

High Investment Size to Scale Production with Uncertain Investment Commitment

- To commercialise production, institutions need large investment size compared to current lab-scale production
- In the short to medium term, funding for 2G Ethanol plants from private and public sector at a commercial scale is still emerging
- Private sector investors, in particular, still have limited confidence in the commercial viability of 2G Ethanol technology

High Production Cost Resulting to Uncompetitive Selling Price

- Processing biomass for 2G Ethanol takes longer, especially during fermentation, which ultimately compounds to overall production time and costs compared to 1G Ethanol
- In 2022, 2G Ethanol production costs were IDR 17,000/L, higher than the sugarcane-based ethanol selling price of IDR 12,000/L
- Ideally, 2G ethanol costs should be lower due to cheaper feedstock, but remain high due to technological limitations

Key Challenges

(\uparrow)

Competing Use Impacting Feedstock Availability

- EFB as the primary residue geared for 2G Ethanol development, is gaining interest as a feedstock for other uses in Indonesia
- For example, state-owned utilities plan to use EFB for co-firing, while a renewables SOE targets it for biofuel ethanol, leading to competition and scarcity at scale
- Currently, biomass costs make up 30% of 2G production costs, but are expected to rise due to growing demand

Complex Ethanol Market in Indonesia

- High reliance on cheaper fossil fuels remains a significant barrier to the adoption of 2G Ethanol
- Despite efforts to promote biofuels, fossil fuels dominate the market due to their affordability and established infrastructure, making it challenging for 2G Ethanol to compete on both price and accessibility

Sources: Experts Interviews

Reducing 2G production costs can be achieved by streamlining logistics, enhancing feedstock supply through partnerships, and driving innovation in technology

Potential Cost Reduction Approaches for 2G Ethanol in Indonesia

Streamline Logistics Chain	Enhance Feedstock Acquisition Through Strategic Partnership	Improve Pre-Treatment Process	Optimize Technology Through Innovation
Optimize Plant Location:	Secure Cost-Effective	Accelerate Pre-Treatment	Simplify Production: Process
Locate bioethanol plants	Feedstock: Leverage strategic	Efficiency: Focus on reducing	for 2G is relatively lengthier
closer to the market rather	partnerships to ensure a	the duration of the pre-	and much more difficult,
than near palm oil extraction	reliable supply of feedstock at	treatment process to lower	requiring technological
sites. This reduces transport	reduced prices, addressing	overall production time and	innovations to make it faster
and logistic costs, improving	the high contribution of	costs for 2G Ethanol –	and more efficient
overall cost-efficiency	feedstock and processing cost	Enhancing pre-treatment	Boduco Enzymo Costs:
Localize Downstream	to overall production	speeds up process and	Enzyme costs are a significant
Facilities: Given that most	Strengthen Supply	reduces operational expenses	expense in 2G Ethanol
bioethanol is shipped to Java,	Relationships: Establish	Invest in Advanced Research:	production. Investing in
establishing downstream	agreements that improve	To tackle this bottleneck,	innovations that enhance
facilities near key markets on	feedstock availability and	more researches have been	enzyme efficiency and
the island can further cut	pricing, which directly	deployed to improve the	availability can greatly reduce
transportation costs and	impacts overall production	techniques to manage and	overall production costs
improve overall supply chain	costs and supports a more	treat palm oil residues	
efficiency	stable supply chain		

2G Ethanol is expected to be commercialised nationwide by 2030, driven by anticipated tech breakthroughs that could overcome key production barriers

Roadmap Towards 2G Ethanol Commercialisation

Sources: Experts Interviews

The following drivers are crucial to address key challenges and accelerate the national commercialization of 2G Ethanol in Indonesia

Assumed 2G Roadmap

are hindering large-scale funding from private and public sectors

2G Ethanol less competitive, with costs exceeding 1G price and costs, while also limiting its availability for ethanol

adoption and competitiveness of 2G Ethanol in Indonesia

Drivers to Address Issues

Funding Support and Ince	ntives	Enhanced Supply Chain and Logistics		Innovation and Technology
 Increase project funding and sull low-interest loans, and waive in for 2G ethanol production 	nport, offer o nport tariffs re	ptimize plant locations and establish ownstream facilities near key markets to educe transportation costs	•	Accelerate pre-treatment efficiency and simplify production processes to reduce time and costs
 Implement a regulated pricing ethanol to encourage investme commercialization 	tier for 2G • Se nt and st st	ecure cost-effective feedstock through trategic partnerships and strengthen upply relationships to improve efficiency	•	Invest in advanced research and innovations to improve techniques and reduce enzyme costs

Based on the interviews, it is assumed that if the Indonesian government can implement and provide policy position on the necessary drivers, 2G Ethanol commercialization is expected to be realized by 2030

Growth in 2G Ethanol will be driven by ecosystem development and policy advocacy, expected to catalyst a shift towards financially sustainable production

Growth Drivers for 2G Ethanol Sector

Ecosystem Development

Supply Chain

Feedstock sourcing, transportation and storage infrastructure need improvement for better project economics

Feedstock Availability

Ensure year-round biomass availability, as current supply is limited to a few months due to the agricultural cycle (seasonal availability)

Technology Maturity

Limited options are available for commercial scale operation of 2G ethanol process. Also, while technical feasibility has been demonstrated, lowering the cost to 1G ethanol seems difficult

Policy Advocacy

Distinct Pricing

Introduce a distinct pricing tier for cellulosic 2G ethanol, establishing a regulated price point positioned above that of 1G ethanol

Funding Support

Enhance the scope and magnitude of support program by augmenting funding per project and expanding the number of projects supported

Financial Incentives

Introduce supplementary financial incentives, such as offering low-interest loans to cellulosic ethanol producers and waiving import tariffs on equipment, chemicals, and enzymes utilized during production

Suggestion

Potential funding options to incentivise 2G Ethanol production include government revenue, debt instruments, PPPs, and carbon credit trading schemes

Funding Mechanisms to Incentivise 2G Ethanol Production

Government Revenue Sources

Revenue from Excise Duties, Taxes

The government may generate revenue from excise duties and taxes levied on ethanol production and sales. A portion of these revenues can be reinvested in supporting ethanol production initiatives, including subsidies, incentives, and infrastructure development

National Budget Allocation

The government allocates funds from the national budget to support ethanol production programs. These funds may be earmarked under different ministries such as the Ministry of Petroleum and Natural Gas, Ministry of Agriculture, Ministry of Environment, Forest and Climate Change, or Ministry of Finance, depending on the specific objectives and priorities of the programs

Borrowing and Debt Instruments

International Financing Institutions

The government can seek funding from international financing institutions such as the World Bank, Asian Development Bank (ADB), International Finance Corporation (IFC), and bilateral development agencies for ethanol production projects. These institutions offer loans, grants, and technical assistance to support renewable energy and climate change mitigation initiatives in developing countries

Other Mechanisms

Public-Private Partnerships (PPPs)

The government can leverage private sector investment through PPPs to finance ethanol production projects. PPPs involve collaboration between the government and private sector companies to co-finance, develop, and operate ethanol production facilities

Carbon Credit Trading Scheme

Ethanol production projects may generate carbon credits and Renewable Energy Certificates (RECs), which can be monetized through trading on domestic or international markets. The government can facilitate the issuance, trading, and monetization of carbon credits and RECs to generate additional revenue for ethanol producers and incentivize sustainable production practices

Identification of Potential Feedstock Including Collection Methods

Internal Survey

Six palm oil biomasses can be utilised as feedstock for ethanol production, with further possibilities for conversion into other derivative products

Potential Palm Oil Biomass in Indonesia

	Potential End Product (Non-Exhaustive)			Potential Energy				
Palm O	il Residues	Description	Ethanol	SAF	Solid Fuel	Fertillisers	Paper Pulp	Generated (TJ/Year) ¹⁾
	Empty Fruit Bunch (EFB)	Residues from palm bunch sterilization and fruit removal in CPO production	\bigcirc	\bigcirc	\bigcirc	\oslash	\oslash	152,000
	Oil Palm Trunk (OPT)	Solid wastes obtained after the felling oil palm trees, available year-round in large quantities	\bigcirc	Likoly	\oslash	\oslash	\oslash	260,000
	Oil Palm Frond (OPF)	Decomposed oil palm residues, mainly used for soil conservation and erosion control	\oslash	possible from ethanol, but no studies	\oslash	\oslash	\oslash	1,227,000
	Palm Kernel Shell (PKS)	Shell fragments left after palm kernels are removed and crushed in the palm oil mill	\oslash	indicated SAF production from these	\oslash	\oslash		110,000
	Mesocarp Fibre (MF)	Biomass residue generated after extracting oil from palm fruits	\bigcirc	Jeeustocks	\oslash		\oslash	133,000
	Palm Oil Mill Effluent	Wastewater from the mill's crude palm oil extraction process	\bigcirc	\bigcirc		\bigcirc		40,300

Notes: 1) Indicates the potential energy that can be generated from residues as feedstock; Sources: National Energy Council of Indonesia (Dewan Energi Nasional), Press Releases, Journals

To estimate the feedstock conversion rate, various publications were reviewed to derive the approximate yield values across each production process

Summary of Conversion Ratio Inputs Across Journals

Feedstock	Source	Cellulose Content	Cellulose to Glucose	Glucose to Ethanol
	Journal 1	44%	60.02%	88.44%
Empty Fruit Bunch (EFB)	Journal 2	28-41%	41 – 79%	-
	Journal 3	43.9%	76%	78.9%
	Journal 4	44.08%	84.44%	56.96 – 79.09%
All the second s	Journal 5	56%	80%	-
factor and the second s	Journal 6	80.74%	93.22%	-
Oil Palm Trunk (OPT)	Journal 7	29.41%	-	_
	Journal 8	43.5%	-	-
	Journal 9	-	-	48%
Oil Palm Frond (OPF)	Journal 10	33%	84 - 100%	-
	Journal 11	26.1%	-	-
Mesocarp Fibre (MF)	Journal 12	25 – 28%	63 – 97%	-

Sources: Various Journals and Publications

Key obstacles in feedstock acquisition include low farmer awareness, suboptimal production, inadequate infrastructure, and high competing uses that increase prices

Challenges Observed in Feedstock Acquisition

Lack of Regulation and Awareness of Palm Oil Residue Use

- No formal clarification on the legality of using palm oil residue for ethanol
- Limited socialisation and education to independent farmers on proper residue management has caused most wastes to be burnt down rather than preserved and collected as feedstock

Inadequate Infrastructure and Facilities to Enable Efficient Supply Chain

- Lack of interconnection, especially in rural areas where most palm oil plants are located, hinders biomass transfer from farmers to factories
- Major logistics components¹⁾ are interdependent and should be planned from a chain perspective rather than separately to achieve a cost-effective biomass supply

Suboptimal Production by Small to Medium-Sized (SM) Palm Oil Farmers

- Lower productivity by SM-sized farmers ultimately limits available residues to utilise
- Unlike industrial-sized producers, the use of inferior seeds and involvement of intermediaries / middlemen experienced by smaller farmers has resulted to lower income, forcing them to diversify to other crops

Higher Feedstock Prices Due to Growing Demand

- Given continued competing uses (e.g., food, FMCG, gasoline, etc.) of palm oil residues, demand is pushing the supply limits, with high prices likely to cause a supply crunch
- The global shift towards biofuel consumption has also driven up export demands, which may reduce local feedstock availability and raise domestic prices

Notes: 1) Including Harvesting, Collection, Storage, Pre-Processing, Transporation, etc.; **Sources:** The International Council on Clean Transportation, Info Sawit Indonesia, International Energy Agency, Chapter on Book "Transition Towards 100% Renewable Energy", Journal of Engineering and Applied Sciences

While oil palm plantations are relatively spread across the country, including Java, the majority are still heavily concentrated in Sumatera and Kalimantan

Oil Palm Plantation Area by Provinces (2022, in Millions of Hectare)

88% (13.5 out of 15.3 mn hectares) of Indonesia's oil palm plantations are concentrated in 10 provinces across Sumatra and Kalimantan

Notes: 1) East Kalimantan = 1,370,592, North Sumatera = 1,370,407; Sources: Indonesia Oil Palm Statistics 2022/2023
Spread of CPO production aligns with the size of oil palm plantation areas, remaining concentrated in Sumatera and Kalimantan

CPO Production by Provinces (2022, in Millions of Tons)

Nearly 90% (42.1 out of 46.82 Mt) of Indonesia's total CPO production is located in 10 provinces across Sumatra and Kalimantan

Sources: Indonesia Oil Palm Statistics 2022/2023

Sumatera and Kalimantan contributed to ~ 96% of CPO production in Indonesia, reinforcing the islands' status as the country's palm oil centres

Overview of CPO Production by Areas (2022, in %)

Sumatera and Kalimantan dominate CPO production, accounting for over 95% of total domestic output. The top 5 provinces on these islands contribute around 68% of national CPO production, while the remaining 29 provinces make up only about 33%.

Notes: 1) Total Peatland = 13.43 mn hectare (Sumatera = 5.8 mn hectare, Kalimantan = 4.5 mn hectare, Papua = 3 mn hectare); **Sources:** Indonesia Oil Palm Statistics 2022/2023, Situs Pantau Gambut Indonesia, Jaringan Pemberitaan Nusantara, Plantation Department of East Kalimantan

The geographic clustering of palm oil production is further evident, with ~ 95% of domestic CPO Mills located in Sumatera (63%) and Kalimantan (32%)

Spread of CPO Mills by Island (Number of CPO Mills, 2019)

The number of CPO mills generally corresponds to an island's contribution of domestic CPO production, with Sumatera and Kalimantan housing 95% of the facilities and being responsible for the bulk of total production respectively

Sources: PT Perkebunan Nusantara (PTPN)'s Publication on CPO Indonesian CPO Mills

Internal Survey

In addition to the leading provinces in Sumatera and Kalimantan, provinces in Sulawesi also demonstrate strong CPO productivity

Provinces like Papua, South-, Central-, and West Sulawesi show higher yield productivity relative to their oil palm plantation area and current CPO production, implying potential palm oil cultivation opportunities outside of Sumatera and Kalimantan

Sources: Indonesia Oil Palm Statistics 2022/2023

Papua has the highest CPO productivity in Indonesia at 5076 Kg/Ha, followed by North Sumatera, Bangka Belitung, and Central Kalimantan

CPO Productivity by Provinces (in Kg per Hectare, 2022)

provinces exceeding this benchmark

compared to rest of Indonesia

the average of the top 10 provinces

Sources: Indonesia Oil Palm Statistics 2022/2023

Internal Survey

Approximately 26 million tons of EFB could be cultivated annually across 9 CPOproducing provinces in Indonesia

Legend: EFB Potential Unidentified Up to 1 MTpa > 1 – 3 MTpa > 3 – 5 MTpa > 5 MTpa North Sumatera 3.63 **6** West Kalimantan **B** East Kalimantan 2.23 **1** Riau 2.27 **10** West Papua 0.11 🔽 Jambi 1.49 **9** West Sumatera 1.07 Central Kalimantan **4** South Sumatera 4.56 **8** South Kalimantan 2.71 1.30

Potential EFB by Provinces (in Millions of Tons per Annum, 2023)

EFB availability generally corresponds to CPO production, hence, predominantly found in Sumatera, Kalimantan, and potentially West Papua

Sources: Pertamina's Presentation for the Association of Indonesian Motor Vehicle Industries (GAIKINDO)

Riau and Central Kalimantan consistently lead in three out of four key metrics: plantation area size, CPO production volume, and EFB residue potential

Comparison Summary of Top 10 Provinces Across Key Metrics

Although other provinces show higher levels of CPO productivity, environmental concerns may limit the development of new oil palm plantations in these areas, emphasizing the needs to Optimize existing plantations for CPO production and residue recovery

Sources: Indonesia Oil Palm Statistics 2022/2023, Pertamina's Presentation for the Association of Indonesian Motor Vehicle Industries (GAIKINDO)

Clear positive correlation between land area and CPO production volume indicates a strong relationship between plantation size and CPO yield

Size of Oil Palm Plantation Area vs. CPO Production Volume

Sources: Indonesia Oil Palm Statistics 2022/2023

The lack of a clear relationship between land productivity and CPO production suggests that higher volumes are not always achieved in more productive areas

CPO Productivity Yield vs. CPO Production Volume

Sources: Indonesia Oil Palm Statistics 2022/2023, Pertamina's Presentation for the Association of Indonesian Motor Vehicle Industries (GAIKINDO)

The size of EFB residue strongly correlates with the volume of CPO production as indicated by the significant upward trend

CPO Production Volume vs. EFB Residue Potential

Notes: 1) Potential EFB Residues data for rest of provinces are not identified; **Sources:** Indonesia Oil Palm Statistics 2022/2023, Pertamina's Presentation for the Association of Indonesian Motor Vehicle Industries (GAIKINDO)

Indonesia's biofuel chain starts with palm oil cultivation, to biodiesel production, blending and distribution, with Pertamina handling most downstream activities

Biofuel Value Chain

Notes: 1) Refined, Bleached, and Deodorised Palm Oil, 2) In most cases, Blending Points are located in, or within close proximity, to the Fuel Terminal; Sources: Sinarmas' Publication on Biodiesel, Pertamina's Press Release on Biodiesel, Otomotif Grid Oto

Biodiesel infrastructure is concentrated in Sumatra and Java, with Sumatra housing most Biodiesel Plants (44%) and Java having the majority of Blending Terminals (46%)

Spread of Biodiesel Plants and Blending Terminals in Indonesia

Sources: Palm Oil Agribusiness Strategic Policy Institute, Pertamina's Publication on B30 Production

Biofuel facilities are spread across 26 provinces, with Blending Terminals typically present in the same location as Biodiesel Plants

Availabilit	y of Biofuel Faciliti	es Across Pro	ovinces BP	Biodiesel Plant: Fa process CPO into	Biodiesel Biodiesel	ing Terminal: Facility to ble with Biodiesel to produce	nd Biofuel FT fue dist	I Terminal: Facility ribute Biofuel price	y to store and or to consumption
Island (1/2)	Province (1/2)	ВР	BT	FT	Island (2/2)	Province (2/2)	ВР	BT	FT
	Aceh			•		Banten	•	•	•
	Bandar Lampung	•	•			Central Java		•	•
	Bangka Belitung			•	lava	DKI Jakarta		•	•
	Bengkulu			•	Java	East Java	•	•	•
Sumatora	Jambi			•		West Java	•	•	•
Sumatera	North Sumatera	•	•	•		Yogyakarta		•	•
	Riau	•	•	•		Central Kalimantan	•		•
	Riau Island	•	•	•	Kali-	East Kalimantan	•	•	•
	South Sumatera		•	•	mantan	South Kalimantan	•	•	•
	West Sumatera		•	•		West Kalimantan		•	•
Sulawasi	North Sulawesi	•	•	•	Bali	Bali	•	•	•
Sulawesi	South Sulawesi		•	•	Nusa Tgr.	East Nusa Tenggara		•	•
Maluku	Maluku			•	Papua	West Papua		•	•

Legend: • Facility Available

Notes: 1) Data shown on this page only indicates the presence of a facility (i.e., whether there is a physical facility in this province), and not the number of available facilities in a particular province; **Sources:** Palm Oil Agribusiness Strategic Policy Institute, Pertamina's Publication on B30 Production, Pertamina Patra Niaga's Press Release on Fuel Terminals

© 2024 Deloitte Consulting Southeast Asia

EFB is regarded as the most suitable feedstock for 2G Ethanol production due to its abundant availability and ease of procurement

Feedstock Feasibility for Bioethanol Production (1/2)

Feedstock	Feasibility	Comments from Experts
		Considered as the most suitable Palm Oil Residue for Bioethanol production
		 Abundant Feedstock Availability: ~ 52 Million Tons of EFB produced annually in Indonesia, 1.1 times the CPO production volume (i.e., ~ 47 Million Tons)
Empty Fruit Bunch (EFB)		 Convenient Procurement Method: EFBs are brought directly to factories by farmers, requiring minimal effort to collect, hence higher economic viability
		• Around 40% of EFBs are processed further, while 60% are returned to the land for soil sustainability
		 Nevertheless, EFB alone may not be enough to meet the all the demand for Ethanol, especially as Indonesia moves into the E10 target
		 Considered as the second most suitable residue for Bioethanol – OPT is one of the residues that ITB has been recommending to the government
		o High carbohydrate content for ethanol production, with sap water containing 70% starch sugar
Oil Palm Trunk (OPT)		 Utilizing just 50% of OPT's sap water could meet Indonesia's E10 demand by 2030
		 Relatively long rejuvenation time of about 25 years and difficult to gather, as OPTs are often left in plantations and rarely collected at factories
		Requires extra processing time during pre-treatment, as the trunk must be powdered first
		Lower feasibility for Bioethanol production due to inconvenience in residue collection
Oil Palm Frond (OPF)		 Comparatively the most difficult to gather among other palm oil residues, which requires additional collection process, hence compounds to production costs
		OPFs are scattered across plantations and need extensive effort to collect for further processing

Sources: Experts Interviews

After EFB, OPT, sugarcane bagasse, and sorghum show strong feasibility for bioethanol production, given their feedstock content and policy-related directives

Feedstock Feasibility for Bioethanol Production (2/2)

Feedstock	Feasibility	Comments from Experts
Palm Kernel Shell (PKS)		 Lower feasibility for Bioethanol due to competing usage with other energy products Despite higher availability of residues, PKS is still mostly utilised for active carbon / solid fuel materials and battery production
Mesocarp Fibre (MF)		 Expert was not able to make comment on Mesocarp Fibre utilization for Ethanol Nevertheless, Mesocarp Fibre was mainly targeted for high value-added products (unspecified) due to the higher oil content in the residue
Palm Oil Mill Effluent		 Medium feasibility due to ease of feedstock procurement with similar gathering method as EFB However, competing use for POME is high as the residue is: Still mainly utilised for Biogas through Biomethane for energy supply to villages near CPO plants Being exported with good trading prospects
Sugarcane Bagasse		 High feasibility for bioethanol production, supported by forecasted increases in bagasse availability due to the National Self-Sufficiency program boosting domestic sugarcane output High cellulose content of up to 50%, with residues amounting to 40% of total sugarcane production However, converting bagasse to ethanol remains costly, as sugarcane production is still concentrated in Java, where significant transport costs are needed to ship bagasse to ethanol plants outside of Java
Sorghum (First Gen)		 High feasibility for Bioethanol production as sorghum utilization is a part of the government's target, with pilot-scale projects currently run by Pertamina However, cultivation area remains limited to just 40,000 Ha, restricting feedstock availability for Bioethanol production

Sources: Experts Interviews

Bioethanol Forecast from Sugarcane Molasses

Four key factors used to estimate molasses-based ethanol supply: sugarcane and molasses production, bioethanol allocation, and molasses-to-ethanol conversion

Summary of Bioethanol Production Calculation Approach

Sources: Deloitte Analysis

Below is the summary of key assumptions and rationale used to calculate Bioethanol Production forecasts through 2060

Key Assumptions for Bioethanol Production Forecasts (1/2)

	Input Items	Assumptions and Rationale
	Project Timeline	Year 2021 will be used as the baseline (i.e., Year 0) in the forecasts
General	Population	 Data for Population refers to The World Bank population trend assumptions (~ 2050) For 2060, calculation is made based on the World Bank population assumptions until ~ 2050
	Sugarcane Production	Sugarcane Production is calculated by multiplying Sugarcane Plantation Area with Sugarcane Yield
	Sugarcane Yield	 From 2021 to 2023, Sugarcane Yield is calculated by dividing Sugarcane Production with Sugarcane Plantation Area as per USDA data From 2024 onwards, Sugarcane Yield is kept constant at 93 T/Ha as per Indonesian Government's plan of increasing the current Yield of 70 to 93 T/Ha
Sugarcane	Sugarcane Plantation Area	 From 2021 to 2023, input for Sugarcane Plantation follows USDA data at 423,000 Ha, 490,000 Ha, and 495,000 Ha respectively From 2024 onwards, 495,000 Ha is the base Plantation Area used, assumed to remain constant An additional 700,000 Ha, as per Presidential Decree No. 40 of 2023, will be added over 7 years, with 100,000 Ha added each year from 2024 to 2030 An additional 2,000,000 Ha, as per Presidential Decree No. 15 of 2024, will be added over 20 years, with 100,000 hectares added each year from 2031 to 2050 From 2051 onwards, size of Sugarcane Plantation Area is assumed to remain constant
Sugar	Sugar Consumption	 Sugar Consumption is expected to grow at the same rate of Population Sugar Consumption is calculated by multiplying Sugarcane per Capita with Population of each year Based on OECD data of Sugarcane per Capita consumption in 2021, 2022, and 2023 at 27.54, 28.08, and 28.23 Kg respectively, a CAGR (2021-2023) of 1.54% is used to forecast Sugar Consumption until 2060
	Sugar Production	Sugar Production is calculated by multiplying Sugarcane Production with Sugar Yield Rate
	Sugar Yield Rate	Sugar Yield Rate is 7.5%, based on Indonesia's average estimates considering land conditions and productivity

Sources: Press Releases, Journals, Deloitte Analysis

Below is the summary of key assumptions and rationale used to calculate Bioethanol Production forecasts through 2060

Key Assumptions for Bioethanol Production Forecasts (2/2)

	Input Items	Assumptions and Rationale
	Sugar Balance	 Sugar Balance is calculated by subtracting Sugar Production to Sugar Consumption A negative balance indicates that Sugar Consumption exceeds Sugar Production
Sugar	Sugar Self Sufficiency Rate	 Self Sufficiency Rate indicates the rate at which domestic production covers domestic consumption Self Sufficiency Rate is calculated by dividing Sugar Production to Sugar Consumption A rate of less than 100% indicates that Indonesia is not able to satisfy demand for domestic sugar consumption from its own supply of sugar production
	Molasses Production	 Based on Kyushu University's Publication, the Conversion Rate of Sugarcane to Molasses is at 4.6% Molasses Production is calculated by multiplying Sugarcane Production to Molasses Conversion Rate of 4.6%
Molasses for Ethanol	Molasses for Bioethanol (Bioethanol Production in Ton)	 Based on Indonesia Ethanol Association (ASENDO), ~ 40% of Molasses are used for Bioethanol production From 2021 to 2023, Molasses for Bioethanol is calculated by multiplying Molasses Production to Bioethanol Usage Rate of 40% From 2024 onwards, Calculation Bioethanol Production will be the subtraction of (<i>Total Molasses</i> <i>Production - (Molasses for Other Purposes + Molasses for Exports))</i> Molasses use for exports and other purposes is expected to remain constant after 2023, with the government likely to focus on increasing domestic ethanol production instead
Production	Molasses for Other Purposes	 Based on ASENDO, ~ 35% of Molasses are used for Other Product Types (e.g., MSG) Molasses for Other Purposes is calculated by multiplying Molasses Production to Other Usage Rate of 35%
	Molasses for Exports	 Based on ASENDO, ~ 25% of Molasses are used for Exports Molasses for Export is calculated by multiplying Molasses Production to Exports Usage Rate of 25%
	Ton to Liter Conversion Rate	Based on MEMR Decree No. 350 K/12/DJE/2018, 1 liter of bioethanol is produced from 4.125 kg of Molasses
	Bioethanol Production in Liter	 Bioethanol Production in Liter is calculated by dividing Bioethanol Production in Ton by 4.125 This figure indicates the final estimate of Bioethanol Production from Sugarcane Molasses for each year

Sources: Press Releases, Journals, Deloitte Analysis

Sugarcane Production Molasses Production Molasses Allocation Bioethanol Production

Sugarcane production forecast considers total plantation area and yield per hectare, following two presidential decrees on Acceleration of National Sugar Self-Sufficiency

Step 1: Calculate Sugarcane Production Forecast

Item	Assumptions / Rationale		Refe	rence:	Sugarca	ane Pro	oductio	n (Milli	ons of	Tons)	
	 Historical Sugarcane data From 2021 to 2023 follows USDA data at 423,000 Ha, 490,000 Ha, and 495,000 Ha respectively 	H	istorical	F	orecast						297
Sugarcane	 As per Presidential Decree No. 40 of 2023, an additional 700,000 Ha will be added over 7 years, with 100,000 Ha added each year from 2024 to 2030 								204	251	
Plantation Area	 As per Presidential Decree No. 15 of 2024, an additional 2,000,000 Ha, will be added over 20 years, with 100,000 hectares added each year from 2031 to 2050 							158	204		
	 From 2051 onwards, Sugarcane Plantation area is assumed to remain constant 						111				
Yield per	 From 2021 to 2023, Yield is calculated by dividing Sugarcane Production with Sugarcane Plantation Area as per USDA data 	30	36	35	55	65					
Hectare	 From 2024 onwards, Sugarcane Yield is kept constant at 93 T/Ha, following Presidential Decree No. 40 of 2023 	2021	2022	2023	2024	2025	2030	2035	2040	2045	2050

Notes: 1) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

Sugarcane production forecast incorporates the government's directives on 700k and 2M hectares of additional plantations, along with a target yield of 93 T/Ha

Step 1: Calculate Sugarcane Production Forecast

Sugarcane Plantation Area (Thousands of Hectare)

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Base	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495
700k Add.1)	100	200	300	400	500	600	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700
2 Mn Add. ²⁾	0	0	0	0	0	0	0	100	200	300	400	500	600	700	800	900	1,000	1,100	1,200	1,300	1,400	1,500	1,600	1,700	1,800	1,900	2,000
Total	595	695	795	895	995	1,095	1,195	1,295	1,395	1,495	1,595	1,695	1,795	1,895	1,995	2,095	2,195	2,295	2,395	2,495	2,595	2,695	2,795	2,895	2,995	3,095	3,195

Sugarcane Yield (Tons per Hectare)

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Yield														93	-												

Sugarcane Production (Millions of Tons)

Formula Used = Total Plantation Area x Yield

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Production	55.3	64.6	73.9	83.2	92.5	101.8	111.1	120.4	129.7	139.0	148.3	157.6	166.9	176.2	185.5	194.8	204.1	213.4	222.7	232.0	241.3	250.6	259.9	269.2	278.5	287.8	297.1

Notes: 1) Following Presidential Decree No. 40 of 2023, 2) Following Presidential Decree No. 15 of 2024, 3) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

On average, around 4.6% of total sugarcane produce can be converted into molasses as the by-product

Step 2: Estimate Molasses Production

Item	Assumptions / Rationale	Reference: Molasses Production (Millions of Tons)	
Molasses Conversion Ratio	 Molasses production is first calculated by estimating the potential yield from Sugarcane Following a scientific research from Kyushu University on Sugarcane utilization in Indonesia, the estimated Sugarcane to Molasses Conversion Ratio is 4.6% 	Historical Forecast 11.5 9.4 7.3	3.7
Molasses Production Forecast	 Forecast of Molasses Production is calculated by multiplying the Sugarcane Production of each year to the molasses conversion ratio of 4.6% 	5.1 2.5 3.0 1.4 1.7 1.6	

Notes: 1) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

2021 2022 2023 2024 2025 2030 2035 2040 2045 2050

To determine the amount of molasses available for bioethanol, 35% allocated for export and 25% for other purposes must be deducted from the total molasses

Step 3: Calculate Molasses Allocation for Bioethanol Production

	Item	Assumptions / Rationale		Referen	ce: Molass	ses Allocat	ion by Pro	oduct Use	
	Proportion of	 Following Indonesia Ethanol Association (ASENDO), below is the breakdown of Molasses production by end-product 	Bioet	thanol	Other Use	es 📃 Exp	oorts		13.67
	Molasses utilization	Bioethanol Other Purposes Export							
		40% 35% 25%					9.39	11.53	
-		 From 2021 to 2023, Molasses for Bioethanol is calculated by multiplying Molasses Production to Bioethanol Usage Rate of 40% From 2024 onwards, calculation for 		2.97	5.11	7.25	89.0%	91.0%	92.4%
	Proportion of Molasses for Bioethanol	Bioethanol Production will be the subtraction of (<i>Total Molasses - (Molasses</i> for Other Purposes + Molasses for Exports))	2.55 59.2%	65.1%	79.7%	85.7%			
	Dioctitution	 Molasses use for exports and other purposes is expected to remain constant after 2023, under the assumption that the government likely to focus on increasing domestic ethanol production instead 	25.1% 15.7% 2024	21.5% 13.4% 2025	12.5% 7.8% 2030	8.8% 5.5% 2035	6.8% 4.2% 2040	5.5% 3.5% 2045	4.7% 2.9% 2050

Notes: 1) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

Sugarcane Production Molasses Production Molasses Allocation Bioethanol Production

Bioethanol production forecast is estimated following the molasses-to-ethanol conversion rate set by the MEMR (1L of Ethanol for every 4.125 kg of molasses)

Step 4: Estimate Bioethanol Production Forecast from Sugarcane Molasses

Item	Assumptions / Rationale				Reference	2		
Molasses Production Forecast for Bioethanol	 Following Step 3, forecasts of Bioethanol Production will be calculated by the following: (Total Molasses - (Molasses for Other Purposes + Molasses for Exports)) The above formula will provide the total molasses available for bioethanol in tons 	Bioethan	ol Producti 1.9	ion (Millior 4.1	6.2	8.4	10.5	12.6
		2024	2025	2030	2035	2040	2045	2050
Molasses to Bioethanol Conversion	 Based on MEMR Decree No. 350 K/12/DJE/2018, 1 liter of bioethanol is produced from 4.125 kg of Molasses Bioethanol Production in Liter is calculated by dividing the production in tons by 4.125 This figure indicates the final estimate of Bioethanol Production from Sugarcane Molasses for each year 	Bioethan 366	469	988 	1,506	2,025	2,543	3,062

Notes: 1) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

By 2050, Indonesia is projected to achieve a production volume of 3 billion liters of bioethanol from sugarcane molasses

Step 4: Estimate Bioethanol Production Forecast from Sugarcane Molasses

Sugarcane Molasses for Bioethanol Production (Millions of Tons)

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Allocation	1.5	1.9	2.4	2.8	3.2	3.6	4.1	4.5	4.9	5.4	5.8	6.2	6.6	7.1	7.5	7.9	8.4	8.8	9.2	9.6	10.1	10.5	11.0	11.3	11.8	12.2	12.6

Conversion Rate from Sugarcane Molasses to Bioethanol

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Conv. Rate														4.125													

Bioethanol Production from Sugarcane Molasses (Millions of Liter)

Formula Used = Molasses for Bioethanol ÷ Conversion Rate

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Production	366	469	573	677	780	884	988	1,092	1,195	1,299	1,403	1,506	1,610	1,714	1,817	1,921	2,025	2,129	2,232	2,336	2,440	2,543	2,647	2,751	2,855	2,958	3,062

Bioethanol production from Molasses is projected to reach 3.1 bn liters by 2050, with 85% coming from 2.7 mn Ha of additional land and 15% from existing plantations

Bioethanol Production from Sugarcane Molasses (Million Liters)

Notes: 1) Following Presidential Decree No. 40 2023, 2) Following Presidential Decree No. 15 2024, 3) Sugarcane Plantation area assumed to remain constant from 2051; Sources: Deloitte Analysis

© 2024 Deloitte Consulting Southeast Asia

The following list outlines the references from various sources used as inputs to forecast molasses-based ethanol production

Reference Lists: Molasses-Based Ethanol Calculation Assumptions (1/2)

Section	Information Used	Source	Details from Source
Step 2: Estimate Molasses Production	Sugarcane to Molasses Conversion Ratio is 4.6%	 Publication Title: Overview of Indonesian Sugarcane Industry and utilization of its Solid Waste Presented during The Annual Fall Meeting of the Mining and Materials Processing Institute of Japan (MMIJ) Link 	Cane sugar is then generally bulk loaded to trucks, railcars, or barges.
Step 3: Calculate Molasses Allocation for Bioethanol	Proportion of Molasses used for Ethanol is 40%	 Publication Title: Indonesian BioEthanol Industry – Current Condition and Opportunity for Development Published by the Chairman of Indonesian Ethanol Association (ASENDO) Link 	1,500,000 USE of MOLASSES • Production ~1,500,000 Ton • Utilization 40% Bioethanol 1. MSG/Amino Acid ~ 500,000 Ton 25% MSG 3. Ethanol Industry ~ 500,000 Ton 35% Export 35% Export Proportion Use

Sources: Press Releases, Journals, Deloitte Analysis

The following list outlines the references from various sources used as inputs to forecast molasses-based ethanol production

Reference Lists: Molasses-Based Ethanol Calculation Assumptions (2/2)

Section	Information Used	Source	Details from Source
Step 4: Estimate Bioethanol Production from Molasses	1 Liter of bioethanol is produced from 4.125 kg of Molasses	 Regulation Title: MEMR Formulation in MEMR Decree No. 350 K/12/DJE/2018 Adopted by State-Owned Energy Enterprises such as ENERO starting from 2020 Link 1 Link 2 	<image/>

Bioethanol Forecast from Sugarcane Bagasse

Four key factors used to estimate bagasse-based ethanol supply: sugarcane and bagasse production, bioethanol allocation, and bagasse-to-ethanol conversion

Summary of Bioethanol Production Calculation Approach

Below is the summary of key assumptions and rationale used to calculate Bioethanol Production forecasts from Sugarcane Bagasse through 2060

Key Assumptions for Bioethanol Production Forecasts

	Input Items	Assumptions and Rationale
	Sugarcane Production	Sugarcane Production is calculated by multiplying Sugarcane Plantation Area with Sugarcane Yield
	Sugarcane Yield	 From 2021 to 2023, Sugarcane Yield is calculated by dividing Sugarcane Production with Sugarcane Plantation Area as per USDA data From 2024 onwards, Sugarcane Yield is kept constant at 93 T/Ha as per Indonesian Government's plan of increasing the current Yield of 70 to 93 T/Ha
Sugarcane	Sugarcane Plantation Area	 From 2021 to 2023, input for Sugarcane Plantation follows USDA data at 423,000 Ha, 490,000 Ha, and 495,000 Ha respectively From 2024 onwards, 495,000 Ha is the base Plantation Area used, assumed to remain constant An additional 700,000 Ha, as per Presidential Decree No. 40 of 2023, will be added over 7 years, with 100,000 Ha added each year from 2024 to 2030 An additional 2,000,000 Ha, as per Presidential Decree No. 15 of 2024, will be added over 20 years, with 100,000 hectares added each year from 2031 to 2050 From 2051 onwards, size of Sugarcane Plantation Area is assumed to remain constant
	Bagasse Production	 Based on a scientific research from Integral University in India, Each Ton of Sugarcane produces 130 kg dry weight of Bagasse (implying a Sugarcane-to-Bagasse rate of 13.0%) Bagasse Production is calculated by multiplying the Sugarcane Production of each year to the Sugarcane-to-Bagasse conversion ratio of 13.0%
Bagasse for Ethanol Production	Bagasse for Ethanol Production	 Two scenarios of Maximum and Conservative are applied Maximum: Sugarcane Bagasse is assumed to be entirely allocated for Bioethanol production (100%) – this assumption is based on the current absence of national directions for Bagasse utilization Conservative: 50% of Sugarcane Bagasse is allocated for Bioethanol, with the rest of 50% allocated for others – assumption is based on the forecast that future demand for bagasse in other sectors may increase
	Ethanol Production in Liter	Based on a Bioethanol study by the European Commission, 1 Ton of Dry Bagasse can produce 180 L of Ethanol

Sources: Press Releases, Journals, Deloitte Analysis

Sugarcane Production B

Sugarcane production forecast considers total plantation area and yield per hectare, following two presidential decrees on Acceleration of National Sugar Self-Sufficiency

Step 1: Calculate Sugarcane Production Forecast

ltem	Assumptions / Rationale		Refe	rence:	Sugarca	ane Pro	oductio	n (Milli	ons of	Tons)	
	• Historical Sugarcane data From 2021 to 2023 follows USDA data at 423,000 Ha, 490,000 Ha, and 495,000 Ha respectively	H	istorical	Fi	orecast						297
Sugarcane	 As per Presidential Decree No. 40 of 2023, an additional 700,000 Ha will be added over 7 years, with 100,000 Ha added each year from 2024 to 2030 								204	251	
Plantation Area	 As per Presidential Decree No. 15 of 2024, an additional 2,000,000 Ha, will be added over 20 years, with 100,000 hectares added each year from 2031 to 2050 							158	204		
	 From 2051 onwards, Sugarcane Plantation area is assumed to remain constant 						111				
Yield per	 From 2021 to 2023, Yield is calculated by dividing Sugarcane Production with Sugarcane Plantation Area as per USDA data 	30	36	35	55	65					
Hectare	 From 2024 onwards, Sugarcane Yield is kept constant at 93 T/Ha, following Presidential Decree No. 40 of 2023 	2021	2022	2023	2024	2025	2030	2035	2040	2045	2050

Notes: 1) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

Sugarcane production forecast incorporates the government's directives on 700k and 2M hectares of additional plantations, along with a target yield of 93 T/Ha

Step 1: Calculate Sugarcane Production Forecast

Sugarcane Plantation Area (Thousands of Hectare)

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Base	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495	495
700k Add.1)	100	200	300	400	500	600	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700
2 Mn Add. ²⁾	0	0	0	0	0	0	0	100	200	300	400	500	600	700	800	900	1,000	1,100	1,200	1,300	1,400	1,500	1,600	1,700	1,800	1,900	2,000
Total	595	695	795	895	995	1,095	1,195	1,295	1,395	1,495	1,595	1,695	1,795	1,895	1,995	2,095	2,195	2,295	2,395	2,495	2,595	2,695	2,795	2,895	2,995	3,095	3,195

Sugarcane Yield (Tons per Hectare)

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Yield														93	-												

Sugarcane Production (Millions of Tons)

Formula Used = Total Plantation Area x Yield

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Production	55.3	64.6	73.9	83.2	92.5	101.8	111.1	120.4	129.7	139.0	148.3	157.6	166.9	176.2	185.5	194.8	204.1	213.4	222.7	232.0	241.3	250.6	259.9	269.2	278.5	287.8	297.1

Notes: 1) Following Presidential Decree No. 40 of 2023, 2) Following Presidential Decree No. 15 of 2024, 3) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

Sugarcane Production Bagasse Production Bagasse Allocation Bioethanol Production

Based on a 13% conversion ratio, each ton of sugarcane production approximately generates 130 kg of dry Bagasse

Step 2: Estimate Bagasse Production

Item	Assumptions / Rationale	Reference: Bagasse Production (Millions of Tons)	
Sugarcane to Bagasse Conversion Ratio	 Bagasse production is first calculated by estimating the potential residues that can be generated from Sugarcane production Following a scientific research from Integral University, India on Bioethanol Production from Sugarcane Bagasse, it is estimated that Each Ton of Sugarcane produces 130 kg dry weight of Bagasse (13.0%) 	Historical Forecast 32.6 26.5 20.5	8.6
Bagasse Production Forecast	 Forecast of Bagasse Production is calculated by multiplying the Sugarcane Production of each year to the Sugarcane-to-Bagasse conversion ratio of 13.0% 		

Notes: 1) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

2021 2022 2023 2024 2025 2030 2035 2040 2045 2050

Sugarcane Production Bagasse Production Bagasse Allocation

Under the Maximum Scenario, 100% of Bagasse is allocated for ethanol production, whereas the Minimum Scenario assumes a 50% allocation

Step 3: Calculate Proportion of Bagasse Allocation for Bioethanol Production

Item	Assumptions / Rationale	Refe	r ence: Bag	asse Allo	cation for	Bioethan	ol (Millior	n Tons)
Maximum Proportion of Bagasse for Bioethanol	 Maximum Scenario: Sugarcane Bagasse is entirely allocated for Bioethanol production (100%) Above assumption is underpinned by the absence of national targets for utilization in other industries or export purposes National targets will be a key variable in this forecast, as bagasse allocation for ethanol will likely depend on future policy decisions 	Cons	ervative Sco	enario	Maximur 20,5	n Scenaric 26,5	32,6	38,6
Conservative Proportion of Bagasse for Bioethanol	 Conservative Scenario: 50% of Sugarcane Bagasse is allocated for Bioethanol, with the rest of 50% allocated for other and export purposes This assumption is based on the forecast that future demand for bagasse in other sectors may increase, potentially reducing the share allocated for ethanol production 	7,2 3,6 2024	8,4 4,2 2025	14,4 7,2 2030	10,2 2035	13,3	16,3	2050
Bagasse for Bioethanol Notes: 1) 2050 forecast is	• This assumption is based on the forecast that future demand for bagasse in other sectors may increase, potentially reducing the share allocated for ethanol production <i>inclusive up to 2060; Sources: Deloitte Analysis</i>	3,6 2024	4,2 2025	2030	2035	2040	2045	2050

Bioethanol production is forecasted using the conversion rate studied by the European Commission, which estimates 180 Liters of Ethanol for every Ton of Bagasse

Step 4: Estimate Bioethanol Production Forecast from Sugarcane Bagasse

ltem	Assumptions / Rationale	Reference: Bagasse-Based Ethanol Production (Million Tons)						
Bagasse to Bioethanol Conversion	 Based on a Bioethanol study by the European Commission in Brazil, 1 Ton of Dry Bagasse is expected to produce 180 Liters of Ethanol There is no difference in conversion rates between scenarios – therefore, the same ratio will apply to both the Maximum and Conservative scenarios 	Cons	ervative Sc	enario	Maximu 3,68	m Scenario 4,77 9	5,865	6,953
Bioethanol Production Forecast	 For each scenario, Bioethanol Production in Liter is calculated by multiplying the size of Bagasse allocated for Ethanol to 180 The resulting figures provide the final estimate of Bioethanol production from Sugarcane Bagasse for each year, following both the Maximum and Conservative 	1,295 647	1,512 756	2,601 1,300	L 1,844	2,388	2,932	J, 470
	scenarios	2024	2025	2030	2035	2040	2045	2050

Notes: 1) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

Bioethanol Production
By 2050, Indonesia is projected to produce 7 Bn L of Bioethanol from Sugarcane Bagasse under the maximum scenario, and 3.5 Bn L under the conservative scenario

Step 4: Estimate Bioethanol Production Forecast from Sugarcane Bagasse

Sugarcane Bagasse for Bioethanol Production (Millions of Tons)

Maximum Scenario

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Allocation	7.2	8.4	9.6	10.8	12.0	13.2	14.4	15.7	16.9	18.1	19.3	20.5	21.7	22.9	24.1	25.3	26.5	27.7	29.0	30.2	31.4	32.6	33.8	35.0	36.2	37.4	38.6

Conservative Scenario

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Allocation	3.6	4.2	4.8	5.4	6.0	6.6	7.2	7.8	8.4	9.0	9.6	10.2	10.9	11.5	12.1	12.7	13.3	13.9	14.5	15.1	15.7	16.3	16.9	17.5	18.1	18.7	19.3

Conversion Rate from Sugarcane Bagasse to Bioethanol

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Conv. Rate										1	L Ton o	f Sugar	cane Ba	agasse	= 180 L	iter of	Ethanc	bl									

Bioethanol Production from Sugarcane Molasses (Millions of Liter)¹⁾

Maximum Scenario

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Production	1,295	1,512	1,730	1,948	2,165	2,383	2,601	2,818	3 <i>,</i> 036	3,253	3,471	3 <i>,</i> 689	3,906	4,124	4,342	4,559	4,777	4,994	5,212	5,430	5,647	5,865	6,082	6,300	6,518	6,735	6 <i>,</i> 953

Conservative Scenario

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Production	647	756	865	974	1,081	1,191	1,300	1,409	1,518	1,627	1,736	1,844	1,953	2,062	2,171	2,280	2,388	2,497	2,606	2,715	2,823	2,932	3,041	3,150	3,259	3,368	3,476

Notes: 1) Calculated by Multiplying Sugarcane Bagasse for Bioethanol by Conversion Rate (180), 2) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

Internal Survey

Base

Total

Under the optimistic assumption of fully utilising bagasse for Bioethanol (100%), production could reach approximately 7 billion liters in 2050

Bioethanol Production from Sugarcane Bagasse: Maximum Scenario (Million Liters)

Notes: 1) Following Presidential Decree No. 40 2023, 2) Following Presidential Decree No. 15 2024, 3) Sugarcane Plantation area assumed to remain constant from 2051; Sources: Deloitte Analysis

© 2024 Deloitte Consulting Southeast Asia

Base

Total

Under the conservative assumption of utilizing 50% of bagasse for Bioethanol, production could reach ~3.5 bn liters by 2050 with 85% sourced from additional land

Bioethanol Production from Sugarcane Bagasse: Conservative Scenario (Million Liters)

Notes: 1) Following Presidential Decree No. 40 2023, 2) Following Presidential Decree No. 15 2024, 3) Sugarcane Plantation area assumed to remain constant from 2051; Sources: Deloitte Analysis

© 2024 Deloitte Consulting Southeast Asia

The following list outlines the references from various sources used as inputs to forecast bagasse-based ethanol production

Reference Lists: Bagasse-Based Ethanol Calculation Assumptions

Section	Information Used	Source	Details from Source
Step 2: Estimate Bagasse Production	Each Ton of Sugarcane produces 130 kg dry weight of Bagasse	 Publication Title: Bioethanol Production from Sugarcane Bagasse – Optimisation Through Response Surface Methodology and Experimental Validation The research published in 2023 was led by Integral University, India Link 	Abstract Sugarcane bagasse is byproduct of sugarcane juice processing. After juice extraction, each tonne of sugarcane produces 130 kg dry weight of bagasse. The present study attempts to produce microbial bio- ethanol using sugarcane bagasse as substrate. After size reduction and chemical pretreatment of sugarcane bagasse using 1M of NaOH 35.68% of hydrolysis was achieved. Ethanol fermentation was carried out in 250 ml Erlenmeyer flask comprising pretreated SCB (30 g/100 ml) containing beads of 6.5% calcium alginate entrapped cellulase with the supplementation of 10 g/l of yeast extract as a nitrogen source using <i>Saccharomyces cerevisiae</i> . After 24 hours, the fermentation broth's alcohol production began, and it reached maximum after 72 hours. The estimated alcohol concentration was 8.1%, and the productivity was 1.14 ml/l/h. The central composite design (CCD) of response surface method (RSM) was used to estimate the levels of variables pH (5.0), incubation time (72 h), inoculum size (10 ml/l), and substrate concentration (40g/100ml) and the impact of their interactions on ethanol production. The fitted model's validity was assessed, and the F-test was used to control its statistical significance. The model <i>F</i> value was calculated to be 92.362 which imply that the model is significant. The experimental model was validated by the laboratory results.
Step 4: Estimate Bioethanol Production from Molasses	Each Ton of Dry Bagasse is expected to produce 180 Liters of Ethanol	 Publication Title: Conversion of Sugar Cane Biomass into Ethanol The report was published by the European Commission to understand the Brazilian second- generation bio-ethanol scenario Link 	Potential impact: Finding alternative sources of energy is vital for Europe. Whether it is for transport or heating the home, second- generation biofuels are a promising alternative to fossil fuels. And should CANEBIOFUEL project contribute to paving the way for the world's first cost-effective and commercially viable process for converting sugarcane biomass into fermentable sugars, then Europe's goal of becoming a more energy and resource efficient 2020 will become all the more attainable. Already, Europe imported some 10 Mhl of ethanol in 2009, up from 3 Mhl in 2004. It is hoped that, by 2020, at least 10 % of all fuel used in Europe will come from renewable sources, including ethanol. And according to the European Commission (EC), biofuel must emit at least 35 % less greenhouse gases than the fuel they replace. Within that formula is a carbon footprint that must be taken into consideration. Considering the estimated production of sugar cane in the harvest of 2009 - 2010 according to CONAB and that 1 tons of sugarcane generates 270 kg bagasse and 144 kg trash/straw, the bangest will generate at least 168 million tons of bagasse and 90 million tons of trash/straw. An amount of 1 ton of dry bagasse would allow production of 180 litres of anhydrous ethanol considering 95 % cellulose recovery during pre-treatment, showing a vast potential for boosting the current ethanol production from sugar cane without occupying more arable fand in Brazil.

Sources: Press Releases, Journals, Deloitte Analysis

Bioethanol Forecast from Empty Fruit Bunch (EFB)

Four key factors used to estimate EFB-based ethanol supply: CPO, CPKO and EFB production, bioethanol allocation, and EFB-to-ethanol conversion

Summary of Bioethanol Production Calculation Approach

	Objectives			Methods Used		
D Forecast of CPO and CPKO Production	Forecast CPO and CPKO production using Ministry's projection data between 2020 and 2045	CPO-CPKO Production	=	Extract CPO-CPKO 2020 to 2045 base	Produced on 1	ction forecast from Ministry's estimate
2 Estimation of EFB from CPO and CPKO Production	Estimate size of EFB generated from CPO and CPKO production using industry conversion ratio	EFB Production		CPO-CPKO Production	*	CPO-CPKO to EFB Conversion Ratio
3 Allocation of EFB for Bioethanol	Calculate potential Bioethanol that can be produced following assumption of usage proportion	EFB for Bioethanol	=	EFB Production	*	Bioethanol utilization Rate
Bioethanol Production from EFB	Convert EFB estimate (in Ton) into Bioethanol production (in Liter)	Bioethanol Production	=	EFB Production for Bioethanol	*	EFB to Bioethanol Conversion Rate

Sources: Deloitte Analysis

Below is the summary of key assumptions and rationale used to calculate Bioethanol Production forecasts from EFB through 2060

Key Assumptions for Bioethanol Production Forecasts

	Input Items	Assumptions and Rationale
СРО-СРКО	CPO-CPKO Production	 Data for CPO-CPKO Production from 2020 – 2045 is extracted from a cross-ministerial and associations study, involving the Ministry of Agriculture, Ministry of Industry, and Ministry of Trade, among others
		CPO-CPKO production from 2045 onwards is assumed to remain constant
	EER Droduction	• Based on an on-going scientific research from Badan Riset and Inovasi Nasional (BRIN), EFB will account for approximately 64% of the total CPO-CPKO production
		• EFB Production is calculated by multiplying the CPO-CPKO Production of each year to the CPO-CPKO-to-EFB conversion ratio weight of 64%
	EFB utilization Rate	• Based on an on-going scientific research from Badan Riset and Inovasi Nasional (BRIN), only 40% of the EFB generated is usable and suitable for further processing, while the remaining must be left back to the soil
		• Utilisable EFB is calculated by multiplying EFB Production to the Estimated utilization Rate of 40%
EFB for Ethanol		Two scenarios of Maximum and Conservative are applied
Production	EFB Portion for Ethanol Production	 Maximum: EFB is assumed to be entirely allocated for Bioethanol production (100%) – this assumption is based on the current absence of national directions for EFB utilization
		• Minimum: 50% of EFB is allocated for Bioethanol, with the rest of 50% allocated for others – this assumption is based on the forecast that future demand for bagasse in other sectors may increase
	Ethanol Production in Liter	• Based on a Bioethanol study by Indonesian Institute of Science, 1 ton of EFB is estimated to yield approximately 301 liters of ethanol
		• Final estimate of Ethanol production in Liter is is calculated by multiplying the size of EFB allocated for Ethanol to EFB-to-Ethanol production ratio of 301

Sources: Press Releases, Journals, Deloitte Analysis

CPO-CPKO Production EF

EFB Allocation

The CPO-CPKO production forecast is based on a cross-ministerial and industry association study, projecting approximately 92.5 million tons by 2045

Step 1: Calculate CPO-CPKO Production Forecast

Item	Assumptions / Rationale	R	Referen	ice: CP	Э-СРКС) Produ	iction F	orecas	t (Millio	on Tons	5)
CPO-CPKO Production Forecast from GAPKI	 The data for CPO-CPKO Production estimate from 2020 up to 2045 is extracted from a cross-ministerial and associations study This study involved multiple directorates across the Ministry of Agriculture, Ministry of Industry, and Ministry of Trade, among others 	53.3	storical 54.9	59.5	59.8	62.8	65.4	80.0	82.8	92.5	92.5
CPO-CPKO Production Forecast from 2045 Onwards	 CPO-CPKO production from 2045 onwards is assumed to remain constant, using 2045 figure of 92,450,000 Tons The assumption to keep the production constant from 2045 onwards is based on the timeline and unpredictable factors that affecting the CPO-CPKO market dynamics 	2021	2022	2023	2024	2025	2020	2025	2040	2045	2050

Notes: 1) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

In line with BRIN's direction, EFB volume is expected to account for approximately 64% of total CPO-CPKO production

Step 2: Estimate EFB Production

 According to a resear Badan Riset and Ino CPO-CPKO production is expected to generat 43.36 Million Tons of BRIN's findings sugge account for approxit CPO-CPKO production BRIN's findings sugge Badan Riset and Ino CPO-CPKO production 	arch conducted by ovasi Nasional (BRIN), a on of 67.75 Million Tons rate approximately	H	istorica	F	orecast						
• Forecast of FED Dro	of EFB gest that EFB will mately 64% of the total on	34.1	35.1	38.1	38.3	40.2	41.8	51.2	53.0	59.2	59.2
• Forecast of EFB Production Forecast each year to the CPC EFB conversion ratio	duction is calculated by D-CPKO Production of O-CPKO Production to D of 64%				T						

EFB Allocation

BRIN's study estimates 40% of EFB is usable. The Maximum Scenario allocates 100% of EFB for ethanol, while the Conservative Scenario allocates 50%

Step 3: Calculate Proportion of EFB Allocation for Bioethanol Production

Item	Assumptions / Rationale				Reference	е		
	According to a research conducted by Badan	EFB Size	Based on L	Jsage Eligil	bility (Millia	on Tons)		
	Riset and Inovasi Nasional (BRIN), only 40% of	Usable	Non-U	Jsable	Г1	53	59	59
EFB utilization	the EFB generated is usable and suitable for	38	40	42	20	21	24	24
Kale	further processing, with the remaining portion	15 23	16 24	17 25	31	32	36	36
		2024	2025	2030	2035	2040	2045	2050
	Maximum Scenario:	EFB Alloc	ation for E	Bioethanol	(Million Toi	ns)		
	 EFB is fully allocated to Bioethanol production (100%) 	Conser	vative Scena	ario 🗾 Ma	ximum Scena 20,5	ario 21,6	21,6	21,6
Proportion of	 Above assumption is based on the absence of national targets for other uses or exports 	15,3	16,1	16,7				
EFB for	Conservative Scenario:				10,2	10,6	11,8	11,8
Bioethanol ²⁾	 50% of EFB is allocated to Bioethanol; the rest to other uses and exports 	7,7	8,0	8,4				
	• This assumption is based on the forecast that future demand for EFB in other sectors may							Ţ
	reduce EFB for ethanol production portion	2024	2025	2030	2035	2040	2045	2050

Notes: 1) 2050 forecast is inclusive up to 2060, 2) National targets will be a key variable in this forecast, as EFB allocation for ethanol will depend on future policy decisions, Sources: Deloitte Analysis

© 2024 Deloitte Consulting Southeast Asia

Bioethanol production is forecasted using the conversion rate studied by the Indonesian Institute, which estimates 301 Liters of Ethanol for every Ton of EFB

Step 4: Estimate Bioethanol Production Forecast from EFB

Item	Assumptions / Rationale	Re	ference: E	FB-Based E	thanol P	roduction	(Million T	ons)
EFB to Bioethanol Conversion	 Research by the Indonesian Institute of Science shows 1 ton of EFB can produce 301 liters of ethanol The figure is derived by multiplying the following figures found in the study Cellulose (Content of Cellulose (Content of Cellulose) (Cellulose) (C	4,606	ervative Sc 4,845	enario 5,039 2,519	Maximur 6,161	n Scenario 6,378 3,250	7,124 3 3,562	7,124
Bioethanol Production	 There is no difference in conversion ratios between scenarios For each scenario, Bioethanol Production in Liter is calculated by multiplying the size of FFB allocated for Ethanol to 301, providing the 	2,303						
Forecast	annual estimate of EFB-based ethanol	2024	2025	2030	2035	2040	2045	2050

Notes: 1) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

By 2050, Indonesia is projected to produce 7 Bn Liter of Bioethanol from EFB under the maximum scenario, and 3.6 Bn Liter under the conservative scenario

Step 4: Estimate Bioethanol Production Forecast from EFB

EFB for Bioethanol Production (Millions of Tons)

Maximum Scenario

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Allocation	15.3	16.1	16.5	16.57	16.59	16.67	16.7	17.4	18.2	18.9	20.0	20.5	20.7	20.8	20.9	21.1	21.2	21.6	22.1	22.8	23.1	23.7	23.7	23.7	23.7	23.7	23.7

Conservative Scenario

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Allocation	7.7	8.0	8.2	8.28	8.30	8.34	8.4	8.7	9.1	9.5	10.0	10.2	10.3	10.4	10.5	10.6	10.8	11.0	11.4	11.4	11.6	11.8	11.8	11.8	11.8	11.8	11.8

Conversion Rate from EFB to Bioethanol

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Conv. Rate												1 Ton o	f EFB =	301 Lit	ers of	Ethano											

Bioethanol Production from Sugarcane Molasses (Millions of Liter)¹⁾

Maximum Scenario

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Production	4,606	4,845	4,954	4,987	4,995	5,019	5,039	5,229	5,488	5,690	6,008	6,161	6,228	6,263	6,305	6,336	6,378	6,500	6,638	6,859	6,965	7,124	7,124	7,124	7,124	7,124	7,124

Conservative Scenario

Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Production	2,303	2,422	2,477	2,494	2,497	2,509	2,519	2,615	2,744	2,845	3,004	3,081	3,114	3,132	3,153	3,168	3,189	3,250	3,319	3,429	3,483	3,562	3,562	3,562	3,562	3,562	3,562

Notes: 1) Calculated by Multiplying EFB for Bioethanol by Conversion Rate (301), 2) 2050 forecast is inclusive up to 2060; Sources: Deloitte Analysis

Under the Max. Scenario of full EFB utilization, Ethanol production could reach 7 bn liters by 2050, or 3.6 bn liters under the Conservative Assumption with 50% utilization

Bioethanol Production from Empty Fruit Bunch (Million Liters)

Sources: Deloitte Analysis

The following list outlines the references from various sources used as inputs to forecast EFB-based ethanol production

Reference Lists: EFB-Based Ethanol Calculation Assumptions

Section	Information Used	Source	Details from Source
Step 1: Calculate CPO-CPKO Production Forecast	CPO-CPKO Production Estimate from 2020 until 2045	 Publication Title: National Palm Oil Industry Roadmap and Guide Towards 2045 The research was conducted by the Ministry of Agriculture, Ministry of Industry, and Ministry of Trade, among others The research, not publicly accessible, was obtained from an expert interview 	Lampiran 7. Data Proyeksi Industri Sawit Weinigung Organization Unigung Organization Unigung Organization 2020 2021 2022 2023 2024 2025 2024 2025 2024 2025 2024 2025 2024 2025 2024 2025 2024 2025 2024 2026 2024 2026 2024 2026 2024 2026 2024 2026 2024 2026 2024 2026 2024 2026 2024 2026 2024 2026 2024 2026 2024 2026 </td
Step 4: Estimate EFB Production	1 ton of EFB can produce 301 liters of ethanol	 Publication Title: Conversion of Cellulose from Empty Fruit Bunch into Ethanol The research was conducted by The Indonesian Institute of Sciences in 2016 Link 	CELLULOSE CONVERSION OF OIL PALM EMPTY FRUIT BUNCH (EFB) INTO ETHANOL ABSTRACT A serious global energy crisis is thought to be originated from the imbalance rapid consumption and the non-renewable nature of the fossil fuels. A potential, yet promising route for diminising this problem might involve rapid conversion of organic waste and biomass into fuels as an alternative. Oil-palm empty fruit bunch (EFB) is the waste from the oil palm plantation which abundant amount of lignocellulosic EFB biomass. EFB biomass was used as raw material of the second generation of bioethanol production. EFB was ten turned into glucose by enzymatic hydrolysis and fermentation simultaneously. Cellulose waste was then turned into glucose by enzymatic oncentration of about 7.93% (w/w). Conversion of cellulose into glucose was about 60.02%, and conversion of glucose into ethanol was about 88.44%. Following distillation, ethanol of 1970 mL was obtained at a concentration of 63% (v/v).

Notes: 1) The information in Steps 2 and 3 is drawn from an ongoing, unpublished study by BRIN, with printed references not yet available; Sources: Press Releases, Journals, Deloitte Analysis

Expansion of Ethanol Use by FFV Introduction

The rapid growth of FFVs in Brazil within five years of launch can be attributed to the positive market sentiment and strong policy uptake by the government

Success Factors for Brazilian FFV Market During 2003 – 2008

К 7 К У

Market / Consumer – Driven

Flexibility to switch fuel choices based on price and convenience

- Price Advantage: Ethanol in Brazil was ~ 40% cheaper than gasoline, offering significant cost savings for consumers
- The global oil crisis in the early 2000s, which spiked gasoline prices, increased the attractiveness of ethanol during this period
- Flexibility: The ability to switch between ethanol and gasoline without engine modifications was a key selling point for FFVs

Large availability of FFVs for public to access

- Widespread availability of FFVs in the market made it easier for consumers to own these vehicles
- Major OEMs invested heavily in FFV production, leading to a greater variety of models
- By 2007, Brazilian OEMs offered > 63 FFV models ranging from Passenger Cars, SUVs, Pickup Trucks, and Light Commercial Vehicles (LCVs)

Competitive tax incentives

on FFV cars from the government

- For Consumers: The sales tax for FFVs and ethanolfueled cars is 14%, which is 2% lower than the 16% tax on non-ethanol cars
 - For Producers: FFV manufacturers received tax breaks¹⁾, encouraging them to increase FFV production
- Initially, preferential tax treatments were exclusive to ethanol cars but were later extended to FFVs to scale their market penetration

Direct intervention to maintain competitive ethanol pricing

Government / Policy–Driven

- As part of the national mandate, ethanol prices have been consistently set and adjusted to remain below gasoline prices since the launch of FFVs
- For instance, before 2011, tax for pure gasoline was > 100%, while tax for E100 (pure ethanol) was < 40%
- In case of exogenous shocks²⁾, Government would negotiate with ethanol producers to reduce ethanol prices

Import restrictions on used diesel vehicles

- Imports of used

 automobiles into Brazil are
 not allowed under any
 circumstances, with special
 authorization required for
 the import of used parts
- Brazil also banned the import of diesel passenger cars, a measure likely to further restrict the access and use of non-FFVs in the Brazilian market

Notes: 1) Tax scheme unidentified, 2) Example: Sudden rise in demand for E100; **Sources:** Rapid Transition Alliance, Global Fuel Economy, Independent Commodity Intelligence Services' Publication on Brazilian FFV Market, Energy Economics' Publication on Transportation Fuel Policies in Brazil, ELLA Area's Policy Brief on Government Intervention to Strengthen the Brazilian Ethanol Sector

The Brazilian market is expected to shift its national policy towards EV adoption, leaving the future role of FFVs uncertain

Observation on the Policy Direction for the Brazilian Transport Sector

- The government has not explicitly prioritized between FFVs and EVs
- The new administration is expected to implement several environmentally friendly measures, potentially introducing improved EV incentives, though the status of FFV support remains uncertain

Price Intervention on EV geared towards protecting domestic industries

- The tax imposition on EVs aims to protect domestic industries, particularly from Chinese products, rather than implicitly promoting further FFV adoption
- Since January 2022, EVs have faced a 10% import tax, which is set to increase to 35% by July 2026

Over the next 15 years, Brazil aims to establish the EV market as a national focus

- Despite discussions on shifting policy towards expanding Brazil's EV market, many experts recommend focusing on FFV development
- Due to high costs, EVs will likely be inaccessible for most Brazilians, thus limiting their impact on GHG reductions

— Points to clarify [.]

1 Prioritisation of vehicle types to reduce GHG emissions

Under the new government, is there a specific direction towards prioritising a particular vehicle type – if so, what are the reasons?

2 Status of FFV in the Brazilian market

What is the status of FFVs in the Brazilian market, and do they still hold priority in the country's transport sector development?

3 Future new preferential policies on EV and/or FFV

Based on the government's direction and national priorities, what are the current & planned policies for the EV & FFV sectors?

4 Role of FFV if national policy is shifted towards EV adoption

What role will FFVs play in Brazil if the government considers new measures for environmental sustainability (i.e., EV)?

India introduced FFVs in 2023 to enhance domestic energy reliance, driven by significant progress in the ethanol sector and numerous government initiatives

FFV Trends in the Indian Market

Introduction of FFV in India

FFV has been introduced in India for < 1 year

- FFV was first launched in India in August 2023 (Toyota Innova 100% ethanol-fueled variant)
- The introduction of FFV is expected to reduce the petroleum imports and promote India's selfreliance in energy

Confidence in FFV driven by Ethanol sector

- India is expected to advance the target for E20 blending to 2025, from the original plan of 2030
- E20 fuel is currently available at > 3300 fuel stations and will be nationwide by April 2025
- As FFVs are powered by ethanol, the government is confident that its strong ethanol industry can support widespread FFV adoption

Government's Initiative to Drive FFV Adoption

Encouraging OEMs to Commence FFV Production	 Since August 2021, the Minister of Road Transport and Highways has urged auto industry CEOs to introduce FFVs capable of running on 100% ethanol and gasoline OEMs are also asked comply with E20 standards by April '23
Research Funding for FFV Development	 Since April 2022, the Indian government has funded a project to develop technology for diesel vehicles to run in flex-fuel mode The project involved Indian Institute of Technology, Indian Oil Corporation (IOC) and Ashok Leyland Ltd.
Regulation to Reduce Conventional Fuels Use	 The government had asked the Mass Emission Standards to introduce gasoline blends (E10-20) and flex-fuel (E85, E100) The government anticipates that offering more fuel alternatives will ease overall transition to FFVs
Tax Benefits for Producers and Biofuel Products	 In October 2023, the Ministry of Road Transportation urged all states to reduce or exempt road tax on FFVs to promote sales India also expanded excise exemptions for biofuels to encourage higher ethanol blends with petrol & diesel

Notes: 1) MES are government-instituted emission standards that all motor vehicles must comply with if they are to be sold and driven in India; **Sources:** Business Standards India, Press Release from the Ministry of Petroleum and Natural Gas of India, India Science and Technology

The FFV industry in India is still at an early stage, with leading OEMs remain focused on vehicle showcases and pilot projects

Recent Development of Major OEMs

- Toyota firstly introduced the Innova HyCross, which can run 100% on Ethanol in 2023
- They also launched a pilot project on Corolla flex-fuel hybrid sedan to support the government in commercializing FFV at scale

- Maruti Suzuki is scheduled to launch its first FFV in India by 2025
- The OEM's first model, WagonR flexfuel car has been designed to run on any ethanol-petrol blend between 20% (E20) and 85% (E85) fuel

91

- Honda introduced India's first flexfuel 2W in 2024, to run on E85 fuel, which is the OEM's first FFV
- Based on Honda's FFV development in Brazil, they are planning to introduce more ethanol vehicles in India in the coming years

- In early 2024, Mahindra showcased its first FFV model, currently the only sub-4m SUV in the market
- Earlier in 2022, the company also partnered with a Canadian firm to boost biofuel access for Indian consumers via fuel dispensers

- As of 2023, TATA Motors is still focusing on making their vehicles E20-compliant
- Nevertheless, TATA is also working towards achieving up to E85 flex-fuel compatibility, with timeline of release still not confirmed

- TVS showcased its first flex-fuel 2W, the Raider 125 FFT, in early 2024, compatible with E20 to E85 ethanol
- Additionally, TVS partnered with Indian Oil, BPCL, and HPCL to set up flex-fuel pumps in India since 2022

۲

Low awareness, high vehicle costs, and underdeveloped infrastructure may restrain the Indian FFV market, highlighting the need for strategic countermeasures

Higher Cost of Vehicles

The incremental cost of flex-fuel

potentially discouraging price-

In 2021, India's per capita income

stood at USD 2,122, making expensive

FFVs unaffordable for most individuals

sensitive buyers

components and advanced systems is likely to increase vehicle prices,

Challenges in the Indian FFV Market

Negative Perceptions & Low Awareness

- Limited awareness on FFV continues to exist among Indian consumers
- Perceptions associated with lower performance and higher price when it comes to new vehicle technologies
- In 2023, only 0.2% fuel stations offer E100, indicating minimal awareness of ethanol utilization as vehicle fuel

– Countermeasures

- Emphasis on education initiatives, showcasing long-term benefits of FFVs, including lower ethanol cost compared to petrol and diesel
- **Provide test drive experience** to demonstrate vehicle capabilities

- Work with automotive OEMs to increase local FFVs production in
- Leverage scale economies to reduce per unit manufacturing costs and pass the savings on to consumers
- Implement a phased approach upon rollout, firstly targeting regions with i)
 High vehicle density, and/or ii) Close proximity to ethanol facilities

Underdeveloped Infrastructure

m

- There is still a lack of adequate ethanol pumps for retail distributions
- Supply chains and fuel production using renewable feedstock still require significant improvement
- Until March 2022, there were only 276 operational ethanol pumps out of the ideal requirement of 25,000¹⁾

Notes: 1) Based on estimate, India will need at least 25,000 E85 pumps to achieve its target of 20% blending; Sources: Coherent Market Insights Report

Brazil's well-structured market dynamic across the ethanol industry, government, consumers, and OEMs turbocharged the promotion of FFV in its early years of release

Success Factors for Brazilian FFV Market in 2003 – 2008

	Well-Established Ethanol Industry	 Brazil's long-established sugarcane industry has historically made ethanol more accessible, with abundant availability of biomass as feedstock enabling large-scale production In Brazil, 1.2% of the country's territory is dedicated to sugarcane cultivation, with 0.9% allocated for ethanol production from both sugarcane and corn
	Steadfast	• FFV adoption was highly advertised by the government due to its environmentally friendly effect that is less polluting than the gasoline cars
	Government's Intervention	• The government imposed preferential tax and pricing policies for manufacturers and end- users to make FFVs more attractive than single-fuel vehicles
~2		
	Consumers Empowerment	 On average, ethanol selling prices were 30% lower than that of gasoline The lower cost of fuel alternatives, coupled with flexibility to switch fuel choices based on price attracted consumers to switch to FFVs instead of sticking to the single-fuel vehicles
	Reliable and Receptive OEMs	 Manufacturers were broadly supportive of Brazil's FFV mandate and responded quickly, driven by government incentives, to mass-produce FFVs OEMs complied with Brazil's mandatory Energy Efficiency Program that required them to
		produce more efficient, eco-friendly vehicles in every succeeding marketing year

Sources: Deloitte Brazil, Expert Interview, Brazil's Ministry of Agriculture and Livestock

The incentive scheme, originally applied in 2003 – 2008, is expected to stay in effect until 2026 and sustain the adoption of FFVs nationwide

ļ†ļ

Incentive Schemes for FFV Adoption

Incentives Scheme in 2003 - 2008

Double" Tax Incentives for OEMs and Consumers Leading to Lower Vehicle Prices

- OEM Incentive: FFV Manufacturers receive 30% reduction in excise tax compared to non-FFV producers
- **Consumer Incentive:** Consumers benefit from a tax reduction ranging from 14% to 28%, depending on factors such as car models and state of registration
- Independent Mechanisms: The tax reductions for OEMs and consumers are separate and do not influence each other; OEM tax savings are not passed on to consumers, and consumer tax reductions do not impact OEMs

Preferential Credit Terms for FFV Manufacturers

FFV manufacturers were eligible for financing facilities at lower interest rates

The incentive scheme applied between 2003 and 2008 is expected to remain in place until 2026

- Future policy beyond this period remains unclear, but the following directions are forecasted:
 - → Taxation for FFVs likely to be lower than ICEs, but higher than of EVs
 - → The government is expected to maintain its support for FFVs to keep them competitive, given the ethanol market's importance to Brazil's economy

Implementation of the "Sin Tax" Bill

- The "Sin Tax" Bill, approved in December 2023, introduces a selective tax on products harmful to health or the environment
- This tax is expected to reduce the prevalence of high-emitting vehicles and promote the use of more environmentally friendly options, such as FFVs

The Brazilian government launched a targeted campaign to promote FFVs, while simultaneously facing strong agribusiness lobbying for sector support

2

Other Factors Promoting FFV Development

Government Propaganda on Domestic Fuel Sufficiency

- Throughout the early 2000s, Brazil faced a petroleum shortage, prompting the government to build a domestic fuel industry by utilising ethanol
- The propaganda was built up around Brazil wanting to foster an Ethanol market as a solution to the country's fuel supply challenges
- Through targeted campaigns and advertisements, the Government tried to effectively communicate and instill the benefits of Ethanol and FFVs
- As a result, the successful promotion led to a widespread adoption of FFVs and increased public support for the overall Ethanol industry

⁹ Strong Lobbying Activities from the Agribusiness Sector

- The Agribusiness sector has a powerful influence in the Brazilian economy, evidenced by its continued profitability even during global crises
- Strong lobbying, particularly from the Sugarcane industry, led to state support being focused on sugar and ethanol production
- Early market imbalance occurred with Anhydrous Ethanol (E100) which is used in vehicles running solely on Ethanol
- Market stabilization was achieved only after the introduction of FFVs capable running on Ethanol blends

Sources: Deloitte Brazil, Expert Interview, Brazil's Ministry of Agriculture and Livestock

India promotes FFV development by offering financial incentives of up to USD 3 million to boost domestic production of Advanced Automotive Technology products

Incentives for FFV Production in India

- The scheme offers financial incentives to boost domestic manufacturing of Advanced Automotive Technology products and attract investments in the automotive manufacturing value chain
- Prime objectives include overcoming cost disabilities, creating economies of scale, and building a robust supply chain in areas of Advanced Automotive Technology products

Target Segment

- The scheme is divided into Champion OEM Incentive Scheme and Component Champion Incentive Scheme
- Six auto components of Flex Fuel Engine (capable of running upto Ethanol 85 (E85) Fuel) have been included in the list of Advanced Automotive Technology components as eligible products for incentivization under this scheme¹⁾

Tenure

• Incentive will be applicable on Determined Sales Value starting from Financial Year 2022-23 for a total of five consecutive financial years until FY2026-27

• The Scheme has a budgetary outlay of ₹25,938 crore, for incentives, equivalent to USD 3 Million

Notes: 1) BS6 compliant Flex Fuel Engine capable of running up to Ethanol 85; 2) Heated Fuel Rail for Flex Fuel Engine; 3) Heating Element for Flex Fuel Engine; 4) Heating control Unit for Flex Fuel Engine; 5) Electronic Control Unit for Flex Fuel Engine and 6) Ethanol sensor for Flex Fuel Engine; **Sources:** Deloitte India, Asia Pacific Centre of Excellence for Sustainability and Climate

Suggestion

FFVs are key to decarbonisation and stimulating Ethanol demand. To drive adoption, governments should offer state support and implement targeted campaigns

Takeaways from Brazilian FFV Market to Indonesia

		WAYS TO		
	Stimulate Ethanol Demand	Mobilise the Market for	Large-Scale FFV Adoption	Achieve Decarbonisation
Lessons from Brazil	 Early government support for the sugarcane industry led to an excess ethanol supply Upon the introduction of FFVs from 2003 onwards, market for Ethanol began to stabilize due to increased demand for E100 and fuel blends 	 Strong Government Support Across Market Participants Beyond agribusiness support, the Brazilian government offers incentives for OEMs to mass-produce FFVs FFV manufacturers enjoy 30% lower excise taxes and better financing compared to non-FFV producers 	 Competitive Pricing and State Propaganda Consumers adopted FFVs to save ~30% on fuel, with FFV car taxes 14-28% lower Facing a fuel crisis, Brazil promoted ethanol through targeted campaigns to drive widespread adoption and public support 	 Brazil introduced the Sin Tax Bill to reduce high carbon- emitting vehicles and promote more eco-friendly options such as FFVs OEMs must also comply with the national Energy Efficiency Program, requiring them to improve vehicle efficiency annually
Takeaways for Indonesia	 FFV implementation can create a versatile Ethanol demand base The growth of FFVs will necessitate a supportive infrastructure development, including widespread availability of ethanol-blended fuels nationwide 	 Government involvement drives investment and innovation in new technologies like FFVs Pro-Ethanol and FFV policies are essential in addressing entry barriers, including high production costs 	 Lower fuel costs and reduced taxes made FFVs appealing to consumers Targeted campaigns effectively communicate the economic and environmental benefits of FFVs, encouraging public adoption 	 Decarbonisation can be achieved by regulating the transport sector National standards can push automakers to build energy-efficient vehicles

Sources: Deloitte Brazil, Expert Interview, Deloitte Analysis

Updated Demand Forecasts (Accounting for FFVs)

Based on the demand calculation in Phase 1, three key assumptions are updated in Phase 3 to account for the additional ethanol demand from FFVs

Refreshed Assumptions Under New Demand Calculation

	Old Assumption in Phase 1	Refreshed Assumption in Phase 3
Definition of Hybrid Vehicles	In Phase 1, Hybrid Electric Vehicle (HEV) refers to a vehicle that combines a petrol or diesel engine with an electric motor, using both energy sources to work together to power the vehicle	 In Phase 3, HEVs are replaced by Hybrid FFVs Hybrid FFV refers to an HEV that can also run on flexible fuels like ethanol or ethanol- gasoline blends
Government Mandate	 In Phase 1, the Blending Mandate is as follows: 2026 - 2030: 0% 2031 - 2040: 15% 2041 - 2060: 20% 	• In Phase 3, it is assumed that there is no blending mandate by the government due to the introduction of FFVs
Blending Rate	In Phase 1, the blending rate for all car types is assumed to match the specified ethanol content of each fuel blend (e.g., for E20, the blending rate is 20%)	In Phase 3, the blending rate for E20 in Hybrid FFVs is expected to follow the Brazilian model, with a blending rate of 48.8%

Sources: Deloitte Analysis

Estimate the number of units sold if sales proceed as per government targets

③Percentage of sales by fuel EV Maximum scenario (Government EV target)

Check past sales performance

- Percentage of units sold by each fuel in the past based on GAIKINDO sales data
- Assumption that the shift to EVs will continue in line with government targets
- To achieve 2.2mil registrations by 2030, 50% of new car sales must be reached by 2030
- Assumes 100% of new car sales after 2050 as per government target

Estimated sales ratio by fuel

Indonesia's push for electrification has begun with its promotion of electric motorcycles. The country is aiming to have <u>at least 13 million</u> electric motorcycles, including retrofitted vehicles, and 2.2 million electric cars on its roads by 2030, with plans to sell only EVs by 2050.

Indonesia's automotive industry is driving toward the future with electrification Published on 10 Aug 2023

FUEL	2015	2016	2017	2018	2019	2020	2021	2022	2023 (~Jul)
Diesel	8.8%	9.4%	12.1%	12.5%	13.1%	15.4%	14.9%	14.2%	11.7%
Gasoline	91.2%	90.6%	87.9%	87.5%	86.9%	84.3%	84.8%	84.2%	82.7%
HYBRID	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.3%	0.5%	4.2%
EV	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	1.1%	1.3%

Fuel type	2022	2030	2040	2050	2060
Diesel	14.2%	15.0	4.0%	-	-
Gasoline	84.8%	25.0%	1.0%	_	-
Hybrid	0.5%	19.0%	5.6%	-	-
EV	0.1%	41.0%	90.0%	100.0%	100.0%

32025202720292031203320352037203920412043204520472049205120532055205720

Gasoline Diesel Hybrid

EV EV cum

© 2024 Deloitte Consulting Southeast Asia

Estimate the number of vehicles sold in cases where the EV shift did not proceed as per government targets

③Percentage of sales by fuel EV Minimum scenario (Stagnation of EV market expansion)

Check past sales performance

• Percentage of units sold by each fuel in the past based on GAIKINDO sales data

FUEL	2015	2016	2017	2018	2019	2020	2021	2022	2023 (~Jul)
Diesel	8.8%	9.4%	12.1%	12.5%	13.1%	15.4%	14.9%	14.2%	11.7%
EV	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	1.1%	1.3%
Gasoline	91.2%	90.6%	87.9%	87.5%	86.9%	84.3%	84.8%	84.2%	82.7%
HYBRID	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.3%	0.5%	4.2%

- Assuming that the shift to EVs does not proceed due to price differences and infrastructure issues at all
- Estimated sales information by fuel
 - Hybrid vehicles are assumed to lead the market during the transitional period within the same xEV group

Fuel type	2022	2030	2040	2050	2060
Diesel	14.2%	15.0	4.0%	-	-
Gasoline	84.8%	25.0%	1.0%	_	-
Hybrid	0.5%	55.0%	80.0%	75.0%	50.0%
EV	0.1%	5.0%	15.0%	25.0%	50.0%

Gasoline Diesel

Hybrid EV ----- EV cum

© 2024 Deloitte Consulting Southeast Asia

Excerpts from past phase deck

Orange text indicates changes in this simulation

Estimated number of units sold by applicable mixing ratio based on historical sales estimates and government response policy

2 Percentage of sales by blending ratio

Percentage of sales by blending ratio estimation

Gasoline/Hybrid vehicles

- Assumption that the sales ratio by blending ratio will remain at the same E10 level as the current sales actual until 2029 (taking into account the development period of applicable vehicles)
- After 2030, it is assumed that E20 will apply to all new vehicles sold

Assumption that the introduction of FFV to the market will eliminate the government's mixed rate mandate E20 \rightarrow No mandate

Excerpts from past phase deck

Nowadays, almost all of the gasoline in Brazil is blended-ethanol gasoline, mostly made from sugarcane, with Gasoline C dominating 70% of the market

Current Condition

Feedstock for Ethanol Sugarcane, Corn, Bagasse			Ethanol Fuel Share	Ethanol Blending Ratio • Gasoline C = E18-E27 (mixed of anhydrous ethanol & pure gasoline) • Hydrous Ethanol = E94-E100		
			Almost no pure gasoline was sold in Brazil, it is only used for blending with anhydrous ethanol			
Ŵ	% in Feedstock	% in Ethanol		Anhydrous Ethanol (10,616 mill ltr - 2021)	Pure Gasoline	
Sugarcane	333,050 k MT (2021)	*23.3 b Ltr (2021)	Ethanol Blended Fuel		~70%	
	~2%	~12%		Gasoline C	39,317 mil ltr (2021)	
Corn	(2021)	(2021)	48.8%	Ethanol	~30%	
Bagasse	~<1% 0.222 k MT (2021)	~<1% *32 m Ltr (2021)	Overall Ethanol Blend Rate	Hydrous Ethanol	16,792 mil ltr (2021)	
* · Deloitte's Calcul	lation		Biending rate used for the calc.			

: Deloitte's Calculation

Source: Government Intervention to Strengthen the Ethanol Sector-ELLA, The Story of Brazil's Ethanol Programme-ELLA, Brazil's Biofuel Annual Report-USDA

With the new assumptions accounting for FFVs, ethanol demand under the Maximum Scenario is, on average, approximately 31% higher than in Phase 1

Sources: Deloitte Analysis

Meanwhile, under the Minimum Scenario, the new ethanol demand forecast is almost always about double the Phase 1 estimates

Refreshed Demand Forecasts: Minimum Scenario (Million Liters)

Sources: Deloitte Analysis

Updated Demand Supply Balance

The conservative scenario projects 10 billion liters of ethanol by 2050, sufficient for the Minimum EV scenario across years and the Maximum EV scenario until 2035

Bioethanol Production Forecast: Conservative Scenario (Million Liters)

Sources: Deloitte Analysis

Phase 1 Demand

The conservative scenario projects a total ethanol supply of 10 billion liters by 2050, sufficient to meet the demand across all EV scenarios over the years

Bioethanol Production Forecast: Conservative Scenario (Million Liters)

Sources: Deloitte Analysis
Internal Survey

The maximum scenario forecasts a total ethanol supply of 17 billion liters, sufficient to meet the demand across all EV scenarios over the years

Bioethanol Production Forecast: Maximum Scenario (Million Liters)

Sources: Deloitte Analysis

Phase 1 Demand

The maximum scenario forecasts a total ethanol supply of 17 billion liters, further exceeding the ethanol demand under both EV scenarios

Bioethanol Production Forecast: Maximum Scenario (Million Liters)

Sources: Deloitte Analysis

Realization of Reasonable Production Costs

The price of Ethanol in Indonesia is ~73% higher than average, while production volume is ~99% lower than average

Cross-Country Ethanol Production Volume and Market Price (2022)

Sources: 1) Source of Data for Ethanol Production is Country Biofuels Report from United States Department of Agriculture, 2) Source for Market Price as follows, USA – US Grains Council, Brazil – Brazil Biofuel Report USDA, India – The Economic Times, Thiland – Krungsi Bank Ethanol outlook, The Philippines – Department of Agriculture, Indonesia – IntraTec Ethanol Prices

Leading ethanol-producing countries manufacture first-generation ethanol at an average cost of USD 0.44 per liter, equivalent to Brazil's production costs

Cross-Country Comparison of 1G Ethanol Production (USD per Liter, 2019)

Sources: Scientific Publication on Economic Aspects and Sustainability of Ethanol Production

2G Ethanol approximately costs USD 0.93 per Liter to produce, about 1.1 times higher than it costs to produce 1G Ethanol

Cross-Country Comparison of 2G Ethanol Production (USD per Liter)

Notes/Sources: 1) Brazil Data is as of 2018 from Journal on Second-Generation Ethanol and Bioelectricity, 2) The Philippines Data is as of 2021 from Journal of Biotechnology for Biofuels, Journal of Biomass and Bioenergy 3) India Data is as of 2021 from International Clean Council on Clean Transportation (ICCT), 4) US Data is as of 2012 from Journal of Biomass and Bioenergy

© 2024 Deloitte Consulting Southeast Asia

Increasing economic viability of 2G Ethanol can be achieved by utilising co-products and implementing cost optimisation measures

Potential Cost Reduction Approaches for 2G Ethanol

Sell High-Value Byproducts

- Co-produce by-products to lower the minimum viable ethanol sales price
- Generate additional revenue by utilizing high-value co-products like SAF, solid fuel, and pulp, improving overall economic feasibility

Implement Contract Systems with Buyers / End-Users

- Secure long-term contracts with buyers to stabilize revenues, enabling bulk production and potential cost reductions through scale economies
- Improve financing terms by boosting creditworthiness through guaranteed sales, lowering loan rates and procurement costs

Reduce Capital Costs

- Scale up plant size and integrate process steps to streamline production, which can lead to significant cost savings
- Co-locate with other processing facilities to share infrastructure to reduce capital expenditure

Enhance Investors' Confidence to Improve Firm's Financing Rates

• Lower technical risks and secure feedstock supply to enhance investor confidence, leading to better financing terms and reduced borrowing costs

Integrate 2G Plant with 1G Facilities

• Maximize ethanol yields and revenue by integrating 2G processes with existing 1G facilities, reducing the need for additional capital investment

Sources: International Energy Agency Bioenergy Publication, Renewable and Sustainable Energy Reviews, Sustainable Energy Technologies and Assessments,

How can we make 2G production more economically viable?

Reducing 2G production costs can be achieved by streamlining logistics, enhancing feedstock supply through partnerships, and driving innovation in technology

Potential Cost Reduction Approaches for 2G Ethanol

Streamline Logistics Chain	Enhance Feedstock Acquisition Through Strategic Partnership	Improve Pre-Treatment Process	Optimize Technology Through Innovation
Optimize Plant Location:	Secure Cost-Effective	Accelerate Pre-Treatment	• Simplify Production: Process
Locate bioethanol plants	Feedstock: Leverage strategic	Efficiency: Focus on reducing	for 2G is relatively lengthier
closer to the market rather	partnerships to ensure a	the duration of the pre-	and much more difficult,
than near palm oil extraction	reliable supply of feedstock at	treatment process to lower	requiring technological
sites. This reduces transport	reduced prices, addressing	overall production time and	innovations to make it faster
and logistic costs, improving	the high contribution of	costs for 2G Ethanol –	and more efficient
overall cost-efficiency	feedstock and processing cost	Enhancing pre-treatment	Reduce Enzyme Costs:
Localize Downstream	to overall production	speeds up process and	Enzyme costs are a significant
Facilities: Given that most	Strengthen Supply	reduces operational expenses	expense in 2G Ethanol
bioethanol is shipped to Java,	Relationships: Establish	Invest in Advanced Research:	production. Investing in
establishing downstream	agreements that improve	To tackle this bottleneck,	innovations that enhance
facilities near key markets on	feedstock availability and	more researches have been	enzyme efficiency and
the island can further cut	pricing, which directly	deployed to improve the	availability can greatly reduce
transportation costs and	impacts overall production	techniques to manage and	overall production costs
improve overall supply chain	costs and supports a more	treat palm oil residues	
efficiency	stable supply chain		

Sources: Experts Interviews

Producing 2G Ethanol in India at USD 1.11/L costs more than the highest price for 1G Ethanol of USD 0.85/L, implying the needs for government intervention to compete

Scenario 1: Cost of Ethanol Production in India

• 2G production is almost 3.8 times more expensive than 1G

- Production cost of 2G Ethanol in India exceeds the peak market price of 1G Ethanol, making financial returns challenging
- Subsidies or higher pricing for 2GE shall be considered to ensure competitiveness with 1GE and attract private investment

Notes: 1) VGF refers to Viability Gap Funding – a programme by the Indian government to provide a funding cap of USD 20 million for 12 key ethanol projects in India, 2) Highest MP refers to highest market price of 1G Ethanol in the market, 3) Currency exchange is as of August 2024 (INR 1 = USD 0.012); **Sources:** India Biofuels Report from USDA, ICCT, ICRIER

On average, ethanol costs USD 0.42/L to produce in Thailand. Its identical economic landscape provides a compelling baseline for Indonesia's cost benchmark

Scenario 2: Cost of Ethanol Production in Thailand

1	Consid	erations to	Use Thailand's Cost as Baseline		
Applicability		Low	High		
Justification	Economic Profiles: As ASEAN peers, Indonesia and Thailand share a similar economic landscape, as indicated by key metrics, making Thailand a strong cost benchmark				
	🛑 ТН	e id	Comments		
Real GDP Growth	1.9%	5.0%	Both countries experiencing positive economic growth, indicating similar economic trajectories		
Real GDP per Head Growth	1.7%	4.2%	Both countries exhibit positive GDP per Head growth, implying comparable economic environment		
Consumer Price Inflation	1.2%	3.7%	Both countries maintain manageable inflation rates, suggesting similar economic pressures and cost impacts		
Labour Productivity Growth	1.1%	1.6%	Both countries demonstrate similar productivity level, indicating comparable level of output produced per worker		
Average Monthly Wage	USD 441	USD 216	ID's lower wages offset other higher indicators, making TH's production costs a conservative benchmark to use		

Cost of Ethanol Production in Thailand

Observation

2

- Cost of raw materials (i.e., feedstock) accounts for the highest proportion to the total unit cost of the 1G Ethanol production, comprising at least ~60% of total cost
- Sugarcane and cassava are the most competitive feedstocks for ethanol production, outperforming alternatives with significantly higher production costs

Notes: 1) Economic Metrics are as of 2023, 2) Direct Costs include all operating expenses on water, enzymes, maintenance, labour, etc. 2) Indirect Costs include expenses on machine, equipment, engineering consulting, etc. 3) Currency exchange is as of August 2024 (THB 1 = USD 0.028), 4) WAC is calculated based on feedstock use to ethanol production in Thailand (59% by Molasses, 37% 118by Cassava, Sugarcane 4%) ; Sources: The Economist Intelligence Unit (EIU), Journal on Ethanol Production Cost in Thailand, Deloitte Analysis © 2024 Deloitte Consulting Southeast Asia

At USD 0.92/L, production cost of 2G is ~70% higher than 1G. Given similar economic³ conditions, The Philippines' cost structure serves a strong benchmark for Indonesia

2

Scenario 3: Cost of Ethanol Production in The Philippines

1	Considera	ations to Us	se The Philippines' Cost as Baseline			
Applicability		Low	🕨 🛑 🔵 💛 High			
Justification	Economic Profiles: As ASEAN peers, Indonesia and The Philippines share similar economic landscape, shown by key metrics, making The Philippines a strong cost benchmark					
	> рн	e id	Comments			
Real GDP Growth	5.5%	5.0%	Close figures suggest that both countri are at a similar stage of development,			
Real GDP per Head Growth	3.9%	4.2%	indicating comparable economic environments			
Consumer Price Inflation	6.0%	3.7%	Both countries maintain manageable inflation rates, suggesting similar economic pressures and cost impacts			
Labour Productivity Growth	3.0%	1.6%	Both countries show a positive trajectory in productivity, demonstrating efficiency improvements that impact costs			
Average Monthly Wage	USD 213	USD 216	Identical wages indicate comparable labor costs, with minimal differences having a limited impact on overall costs			

Cost of Ethanol Production in The Philippines

Cost of Ethanol Production by Feedstock (USD per Liter, 2021)

Observation

- On average, production cost for 2G Ethanol is ~70% higher than 1G Ethanol production
- If market price is set for uniformity between 1G and 2G Ethanol, 2G producers might be at a disadvantage by settling with lower margins
- Public sector's interventions in the form of price setting, investment aid, tax breaks, etc. needed to ensure competitiveness for 2G market

Notes: 1) Economic Metrics are as of 2023, 2) Currency exchange is as of August 2024 (PHP 1 = USD 0.017); **Sources:** The Economist Intelligence Unit (EIU), IntechOpen Journal/Book Publication on Comparative Analysis of Bioethanol Production in The Philippines

2G production costs of USD 0.53/L to decrease by 13% in 2030. With similar largescale crop production, Brazil's cost structure is a considerable baseline for Indonesia

Scenario 4: Cost of Ethanol Production in Brazil

1 Considerations to Use Brazil's Cost as Baseline						
Applicability	Low O) () High				
Justification	Feedstock Abundance: As top products for ethanol feedstoc see comparable production co availability of residues, <u>althou</u>	producers of key agricultural k, Brazil and Indonesia could osts due to the abundant gh utilising different crops				
	Brazil	Indonesia				
Main Crop	Sugarcane	Palm Oil				
Global Positioning	Brazil is the biggest Sugarcane producer, accounting for ~32.5% of total global production	Indonesia is the biggest Palm Oil producer, accounting for ~60% of total global production				
Production Volume	705 Million Tonnes	47 Million Tonnes				
Potential Residues	415 Million Tonnes	44 Million Tonnes ²⁾				
Direction	Policy shift on sugarcane use from sugar more towards ethanol production	Clustering of ethanol & biofuel production near CPO areas to boost efficiency				

Cost of Ethanol Production in Brazil

Observation

2

- In the short term (2018), 1G Ethanol production in Brazil is 36% lower than 2G Ethanol, demonstrating strong cost-competitiveness
- However, in the long-run (2030 onwards), 2G Ethanol is projected to be around 30% cheaper than 1G, highlighting future cost advantages
- Acceleration in investment and improvement in industrial process and biomass production systems are expected to drive overall cost reduction in 2G production

Notes: 1) Currency exchange is as of August 2024 (BRL 1 = USD 0.18), 2) Solid Waste = 20.07 Mn Tons, Liquid Wastes / POME = 23,7 Mn Tons; **Sources:** São Paulo Research Foundation, Federal Government of Brazil, Ministry of Science, Technology, and Innovation, USDA, Journal on Potential of Biomass Residues from Oil Palm Agroindustry in Indonesia, The World Bank

Currently, production for 1G costs ~95% less than 2G. The US and Indonesia share similarities as major crop producers, making US costs relevant as Indonesia's baseline

Scenario 5: Cost of Ethanol Production in USA

1	Considerations to Use T	he US' Cost as Baseline
Applicability	Low 🔵 🤇) () High
Justification	Feedstock Abundance: As top products for ethanol feedstoc see comparable production co availability of residues, <u>althou</u>	producers of key agricultural k, The US and Indonesia could osts due to the abundant gh utilising different crops
	the US	Indonesia
Main Crop	Corn	Palm Oil
Global Positioning	The US is the biggest Corn producer, accounting for ~31% of total global production	Indonesia is the biggest Palm Oil producer, accounting for ~60% of total global production
Production Volume	384 Million Tonnes	47 Million Tonnes
Potential Residues	216 Million Tonnes	44 Million Tonnes ³⁾
Direction	Introduction of tax credit / benefits to corn ethanol fuel producers from May 2024	Clustering of ethanol & biofuel production near CPO areas to boost efficiency

Observation

• On average, cost to produce 2G Ethanol is 95% higher than 1G

• 2G Ethanol, produced at a minimal cost, is well-positioned to compete with higher-priced 1G feedstocks such as Refined Sugar

Notes: 1) Processing Cost includes Variable, Fixed, and GA expenses, 2) Range of 2G Ethanol costs vary based on production technicalities (e.g., enzyme amount, distillation approach, fermentation method, etc., 3) Solid Waste = 20.07 Mn Tonnes, Liquid Wastes / POME = 23,7 Mn Tonnes, 4) WAC is calculated based on feedstock use to ethanol production in USA (99% by Corn); Sources: Journal 121of Biotechnology for Biofuels, Journal of Biomass and Bioenergy, US Department of Agriculture (USDA), The World Bank, Deloitte Analysis

Suggestion

Increasing 1G production volume can lower costs, while 2G costs can be reduced by selling high-value byproducts, optimizing capital, and integrating 2G with 1G facilities

Suggestions to Reduce Ethanol Costs in Indonesia

All of palm oil residues can be converted into 2G Ethanol and its derivatives, but only EFB and POME hold the potential for producing high-value products such as SAF

Potential Products from Palm Oil Residues

L1: Products require further processing, L2: Products ready for use

L1 Products	L2 Products	🧼 EFB	ОРТ	OPF	M PKS	MF	POME
	Biofuel	•	•	•	•	•	•
	SAF AtJ Pathway • Likely possible from ethanol, but no studies have indicated SAF production from these feedstocks					•	
	Bio Plastic Products	•	•	•	•	•	•
	Other Non-Fuel Products	•	•	•	•	•	•
Charcoal Briquettes	Solid Fuel	•	•	•	•	•	
or Bio Pellets	Liquified Gas (LPG)	•					
	Organic Fertiliser	•	•	•	•		•
Composites	Animal Feed			•	•		
Pulp	Paper •		•	•	•	•	
Sap Water	Palm Sugar (Aren)		•				
(Wood) Fiber	Industrial Wood Products		•	•		•	
Ashes	Industrial Products Filler				•		
Activated Charcoal	Purification & Filtration Products ¹⁾				•		
Methane	Biogas	•					•

Notes: 1) Sample applications such as water filtration, air purification, and waste treatment; Sources: National Energy Council of Indonesia (Dewan Energi Nasional), Press Releases, Journals

In addition to SAF as a high-value derivative, EFB can also be used to produce liquefied gas, which is widely utilised in Indonesia

Mapping of Potential Products from Palm Oil Residues (1/4) L1: Products require further processing, L2: Products ready for use Residues L1 Product L2 Product SAF AtJ Pathway 2G Ethanol Bio Plastic Products Other Non-Fuel Products Empty Fruit Liquified Gas Bunch (EFB) Charcoal Briquettes or Bio Pellets Solid Fuel Palm Oil Production Composites **Organic Fertiliser** Pulp Paper Biofuel 2G Ethanol **Bio Plastic Products** Oil Palm Trunk (OPT) **Other Non-Fuel Products** Charcoal Briguettes or Bio Pellets Solid Fuel

Sources: National Energy Council of Indonesia (Dewan Energi Nasional), Press Releases, Journals

A unique use of OPT is in producing Palm (Aren) Sugar from its sap water, while OPF's composites serve as animal feed

Mapping of Potential Products from Palm Oil Residues (2/4)

L1: Products require further processing, L2: Products ready for use

Sources: National Energy Council of Indonesia (Dewan Energi Nasional), Press Releases, Journals

In addition to being used as Solid Fuel, PKS waste is also utilised in industrial fillers and filtration products

Mapping of Potential Products from Palm Oil Residues (3/4)

L1: Products require further processing, L2: Products ready for use

Notes: 1) Sample applications such as water filtration, air purification, and waste treatment; Sources: National Energy Council of Indonesia (Dewan Energi Nasional), Press Releases, Journals

© 2024 Deloitte Consulting Southeast Asia

Besides EFB, POME is another residue suitable for SAF production and is also used for Biogas generation

Mapping of Potential Products from Palm Oil Residues (4/4)

L1: Products require further processing, L2: Products ready for use

Sources: National Energy Council of Indonesia (Dewan Energi Nasional), Press Releases, Journals

Suggestion

SAF and Solid Fuel offer the most potential from palm oil residues and Ethanol. Deeper survey is needed to understand the synergy within the palm oil industry

Portfolio Suggestions to Enable 2G Ethanol Cost Reduction

Based on Experts Interviews, Sustainable Aviation Fuel and Solid Fuel are considered as the highest-value-added products from Palm Oil Residues

Current Status

Sustainable Aviation Fuel (SAF)

- SAF Market has not been established, with most activity limited to pilot projects and feasibility studies
- SAF costs 2.5 5 times more than conventional jet fuel, with pertaining uncertainties due to the market's early stage of development
- There is no formal national roadmap for SAF, but commercialization is anticipated to align with the Global NZE Aviation Target in 2050

Solid Fuel

 \bigcirc

- The waste-based Solid Fuel market has been growing in Indonesia, primarily for fuels made from Palm Kernel Shells (PKS)
- According to the MEMR, price for residue-based solid fuel used for co-firing generation is 1.2 times higher than that of coal
- As for export itself, the potential export of PKS to Japan is estimated to reach USD 12 million per year

Way Forward

To identify the industrial synergy, further exploration is required for palm oil residues and other alternative feedstock such as bagasse

Notes: 1) PLN or Pembangkit Listrik Negara is the State Electricity Company, 2) PTPN or PT Perkebunan Nusantara is the State-Owned Enterprise holding company in the plantation sector

Appendix : SAF Development Status

SAF blending targets differ by country, but net-zero aviation is anticipated by 2050, aligning with the International Air Transport Association (IATA)'s goal

Global SAF Blending Targets

- IATA targets for aviation to achieve net zero by 2050
- CORSIA mandated phase will start from 2027: The airlines' emissions above the baseline set by CORSIA multiplied by the growth factor of the industry emissions above the same baseline represents the total emissions that must be offset for the given year)
- US government has not defined SAF blending mandate yet, however US has set a goal to produce 3 billion gallons per year SAF by 2030 which is equivalent to ~14% SAF blending¹
- Canada has aspirational goal of 10% blending of SAF by 2030

Notes: 1) Equivalent to ~14% SAF blending considering total ATF consumption in USA (2021) and 3 billion gallons per year SAF production goal by 2030; **Sources:** Deloitte India, Asia Pacific Centre of Excellence for Sustainability and Climate

Major airlines are also voluntarily setting their own SAF blending targets, implying the needs to ramp up production to meet future demand

Blending Targets by Major Airlines

Notes: 1) Market share calculated based on passenger km numbers for year 2021, 2) Six airlines has ~24% global market share in terms of passenger km; 3) Information provided is based on publicly available information, not exhaustive; **Sources:** International Air Transport Association, Deloitte India, Asia Pacific Centre of Excellence for Sustainability and Climate

Increasing SAF adoption requires collaboration across market stakeholders, including producers, airlines, financial institutions, and even flyers

Market Dynamics to Promote SAF Adoption

Producers	Airlines	Financial Institutions	Flyers
 Allocate resources for R&D Establish efficient supply chain Forge strategic partnership with airlines, aircraft manufacturers, airports, government agencies etc. Look at joint venture opportunities for investments and tech transfer 	 Long term offtake agreements Participate in joint initiatives/pilot projects with SAF producers Adopt SAF compatible aircraft and engine technology Implementation of voluntary carbon offsetting program 	 Allocation of funds for green projects Special project financing terms for SAF production facilities Financial instruments such as green bonds to promote low carbon technology 	 Customers willing to pay green premium Customers with preference towards SAF-friendly airlines

Sources: Deloitte India, Asia Pacific Centre of Excellence for Sustainability and Climate

Increased SAF production through the ATJ route can drive demand for agricultural residues, raising farmers' incomes in middle-income countries like India

Synergy Between SAF Production to Farmers' Welfare

Initiatives for Increasing Farmers' Income

Involvement of Farmer Producer Organizations (FPOs) or Farmer Producer Companies (FPCs): Leveraging FPOs and FPCs for SAF feedstock collection would ensure continuous supply. It will also empower farmers by giving them collective bargaining power and access to resources

Strengthening Supply Chain: It will help to reduce postharvest losses and enable farmers to access distant markets

Notes: 1) Considering 5% blending (2030), 2) Assuming 40% of SAF is produced via other technology pathways, 3) Additional Farmers' Income: Considering Agro residue selling price INR 4 – 5 per kg, Considered USD 1,140 per hectare farmer income, overall INR 24-30 billion income increase for farmers; **Sources:** Deloitte India, Asia Pacific Centre of Excellence for Sustainability and Climate

Promoting SAF requires a multi-faceted market approach, including leveraging SAFc, enhancing feedstock processing, and driving consumer willingness to pay a premium

Market Mechanisms for SAF Promotion

SAF Certificates (SAFc)

- SAFc is a **market-based mechanism** following Book & Claim method that can be tracked and traded independently
- Sustainability attributes of SAF are de-coupled from fuel as SAFc
- SAFc makes it viable to produce SAF in economically feasible or distant areas and allows airlines to consume SAF independent of its physical availability at their location
- SAFc increases **involvement of corporates outside aviation industry** hence increasing SAF adoption

Customer Willingness to Pay Premium

- Implementing comprehensive awareness campaigns to inform customers about the benefits of SAF, including reduced carbon footprint & environmental sustainability
 - Introducing incentives such as loyalty rewards or discounts for customers who choose SAF-powered flights, encouraging them to opt for environmentally friendly options
- Advocating for policies that incentivize SAF adoption, such as tax breaks or subsidies for airlines and consumers who use SAF, thereby reducing relative cost compared to traditional jet fuel

Feedstock Processing Machinery Support

- Allocating **funding towards R&D initiatives** focused on improving feedstock processing machinery for SAF production
- Facilitating partnerships between equipment manufacturers, research institutions, & SAF producers to exchange knowledge and develop specialized machinery tailored for SAF production
- Offering training workshops to equipment operators and technicians to enhance their proficiency in operating and maintaining feedstock processing machinery, ensuring optimal performance and longevity

Sources: Deloitte India, Asia Pacific Centre of Excellence for Sustainability and Climate

Corporate Willingness to Pay Premium

- Promote integrating SAF into corporate strategies for carbon reduction and CSR
- Establishing industry standards and certification programs for SAF to verify its environmental credentials, enabling corporations to make informed decisions and justify the premium associated with purchasing SAF
- Working with suppliers to develop strategies to incorporate SAF into corporate travel policies & procurement processes, fostering a culture of sustainability throughout the business ecosystem

Efforts from the government in the form of R&D funding, mandates enactment, and price setting would be necessary to increase overall SAF consumption

Policy Suggestions to Stimulate SAF Development

The main challenges in SAF production include inadequate infrastructure for efficient feedstock collection and high production costs

Key Challenges in SAF Production

Lacking Feedstock Collection Infrastructure

- Concern on consistent & reliable feedstock supply at a stable price due to lacking collection & processing infrastructure for waste/feedstock
- UCO from households is disposed of in drains, while the commercial UCO is sold back for reuse in the market
- Surplus agricultural waste is burned by Farmers due to the absence of disposal capabilities, hence creating wastage and pollution
- Large amount of Bio-MSW¹ is not treated and directly dumped into landfills, while also requires proper segregation for any use
- Palm oil cultivation is primarily concentrated in specific regions. Establishing a collection of infrastructure that can efficiently gather palm oil from these dispersed locations while minimizing transportation costs remains challenging

2

High Costs of SAF Production

- The production costs of SAF are higher than that of ATF
- Indian consumers are highly **price-sensitive**, and domestic airlines operate at very **low margins**
- SAF must be cost-competitive with conventional fuel to stimulate its use in market
- There is a need for policies and mechanisms that allow cost to be borne across multiple stakeholders, i.e., government, airlines, producers, and flyers

Producing SAF from agricultural residues via the AtJ pathway offers the highest feasibility based on feedstock availability, affordability, and ease of procurement

Feasibility of SAF Production by Pathway

Pathway	Туре	Feedstock		Availability	Affordability	Ease of Procurement
HEFA	Crop Based	Edible Oil Crops/Palm Oil				
	Waste	Waste & Residue Lipids	Used Cooking Oil			
			Animal Waste Fat			
			Others			
	Others	Oil Trees, Oil cove	er crops, Algae, Halophytes			
AtJ	Crop Based	Sugary/Starch crops				
FT	Waste	Municipal Solid Waste				
	Agricultural	Agricultural Residues				
AtJ/F1	Waste	Forestry Residue				
PtL	Carbon Capture	Point Source & Direct Carbon Capture				
	Waste	Reusable Plastic Waste				

Sources: Deloitte India, Asia Pacific Centre of Excellence for Sustainability and Climate

The SAF-ATF cost gap can be reduced through mechanisms such as corporate initiatives, SAF certificates, and sharing premiums across stakeholders

Methodologies to Fund SAF Production (1/2)

Transferring SAF premium to SAFc

SAFc Overview

- It is a market-based mechanism following Book & Claim method
- The sustainability attributes of SAF are de-coupled from fuel as SAFc
- The SAFc can be tracked and traded independently
- The fuel is treated just like a conventional jet fuel

Impact

- Makes it viable to produce in economically feasible or distant areas
- Allows airlines to **consume SAF** independent of its physical availability at their location
- Funds generated by SAFc transactions offset SAF's premium over ATF
- SAFc increases **involvement of corporates outside aviation industry** hence increasing SAF adoption

Industry Experts Overview

'SAF is the single most important technology for decarbonizing aviation in the short to medium term. We need supportive **government policies**, **including blending mandates and sustainable aviation fuel** credit

mechanisms, to incentivize its production and use"

Sources: Deloitte India, Asia Pacific Centre of Excellence for Sustainability and Climate

Additional costs can be obtained from less price elastic customers

Examples of Environmental Integration in Business Strategies

A growing number of environmentally conscious corporations are integrating sustainability goals into their business strategies

Examples:

- **Microsoft:** Partners with SkyNRG to purchase SAF for corporate travel, demonstrating their commitment to sustainability
- **DHL:** Committed to utilizing SAF for a portion of its global operations, actively contributing to market demand

Customer Willingness To Pay For SAF

- According to a Forbes report "It was reported that, on average, consumers were willing to pay **13% more for the biofuel ticket**"
- Roland Berger's Future of Long-Distance Travel Report found that 90% of respondents said they are willing to pay more for sustainability in air travel
- "Companies are willing to pay a 'green premium' when they purchase SAF to reduce their business travel emissions,"
 - Neste's renewable aviation business

The SAF-ATF cost gap can be reduced through mechanisms such as corporate initiatives, SAF certificates, and sharing premiums across stakeholders

Methodologies to Fund SAF Production (2/2)

Sources: Deloitte India, Asia Pacific Centre of Excellence for Sustainability and Climate

Appendix 1 : Roadmap for Ethanol Introduction by the Indonesian Government

Two ministries are developing Ethanol Acceleration Roadmaps. While the Coordinating Ministry's plan is unpublished, the MEMR has proposed new targets

Roadmaps for Ethanol Acceleration in Indonesia

Notes: 1) Jakarta and Surabaya, 2) Regulation concerning the accelerating national sugar self-sufficiency and bioethanol use as biofuel; **Sources:** Japan-Indonesia Policy Dialogue, Press Releases from the Coordinating Ministry of Economics Affairs, Kompas Nasional News, Antara News

Appendix 2 : Material presented at the 5th Indonesia Japan Automobile Policy Dialogue

Monitor Deloitte.

Study on Policy advocacy for Biofuel in Indonesia

The 5th Indonesia Japan Automobile Dialogue

Deloitte Consulting Southeast Asia 27 June 2024

© 2024 Deloitte Consulting Southeast Asia

Table of Contents

Need for bioethanol in Indonesia	3
Case study for advanced market : Brazil	8
Potential of bioethanol to combat challenges	12
Way forward	20
Need for bioethanol in Indonesia

The Indonesian Government is tackling three key challenges: "Improvement of Air Quality", "Utilization of Domestic Resources" and "Transition Away from Reliance on **Fossil Fuel**"

Three key challenges facing Indonesia

Air pollution global ranking (IQAir) By country: 14th By city: 7th (Jakarta)

Vehicles account for 44% of Jakarta's air pollution sources

Need to reduce GHG emissions and PN

Utilization of Domestic Resources

An economy dependent on unprocessed resource exports (primary industry), which are susceptible to trends in global resource demand

Need to upgrade domestic industry to a processing exportoriented economy, which is a higher value-added industry

Transition Away from **Reliance on Fossil Fuel**

Trade deficit due to significant excess imports of crude oil

Vulnerability in energy security

Increased fuel subsidy spending

Need to move away from dependence on crude oil imports Biodiesel was introduced in the 2000s to reduce dependence on oil imports, alleviate poverty and bolster employment opportunity. Various policies proved successful, resulting market expansion and deployment of B35

Status of biodiesel introduction

Implementation

Main policies

- CPO Funds to rejuvenate oil palm plantation & farmer's wellbeing
- Mandated to use FAME in certain blending ratio amount progressively
- Sanction system for fuel blender & FAME producer
- Subsidy Biodiesel price from export levy of CPO and its derivatives

Feedstock for Biodiesel Palm oil as feedstock Bio blended diesel Fuel Share 94.5% Bio-blended diesel's share in total diesel fuel **Biodiesel Blending Ratio**

Blending mandate as of 2023

Gasoline constitutes a larger portion of the four-wheeled vehicle market compared to diesel, and ministers have expressed a strong inclination to advocate for the introduction of bioethanol alongside biodiesel

Need for bioethanol in the transport sector (1/2)

Four-wheeled vehicles (passenger cars & commercial vehicles), % of total sales Passenger: 43K (4%) Commercial: 110K (11%) EV 73K (7%)Diesel 153K (15%) 1,006K (2023)Gasoline 781K (78%)

Gasoline vehicles (including HEV) account for approximately 80% of all four-wheeled vehicles

"Then it was decided to consolidate the acceleration of sugar selfsufficiency. Because indeed, if we follow what is now, we will continue to import. Then we will also **encourage it to become bioethanol**. Incidentally, yesterday because many people have asked to accelerate development, this task force was formed"

Investment Minister : Bahlil Lahadalia

Jakarta, May 2nd

Coordinating Minister: Luhut Binsar Pandjaitan

Mr. Luhut Binsar Pandjaitan, Coordinating Minister for Maritime Affairs, has revealed that Plutamina plans to acquire an **ethanol** and sugar production company in Brazil "Pertamina's promotion of biofuels could achieve an early replacement of fossil fuels. A gradual bioethanol transition is

necessary to mitigate standby pollution such as that currently occurring in the capital, Jakarta" Jakarta, June 10th

Bioethanol holds the potential to address the key challenges of "Improvement of Air Quality", "Utilization of Domestic Resources" and "Transition Away from Reliance on Fossil Fuel"

Need for bioethanol in the transport sector (2/2)

Source : Estimation by the project based on various datapoints incl. EIU

© 2024 Deloitte Consulting Southeast Asia

Case study for advanced market : Brazil

Brazil produces ethanol from sugarcane, the nation's most significant agricultural product, and has developed it as a new national industry, becoming one of the world's foremost bioethanol producers

Case study on the introduction of ethanol in Brazil (Ethanol market)

Feedstock for Bioethanol

Sugarcane as feedstock (% in Bioethanol)

Bioethanol Fuel Share

~100%

Bioethanol blended gasoline sales ratio

Sales ratio by Bioethanol fuel type

70 : 30 Gasoline C Hydrous Ethanol 27% ethanol blended 100% pure ethanol

Source: Government Intervention to Strengthen the Ethanol Sector-ELLA, The Story of Brazil's Ethanol Programme-ELLA, Brazil's Biofuel Annual Report-USDA

Strong Gov't-led promotion of FFV to utilize domestic resources and reduce reliance on oil imports, results over 90% of passenger cars in the domestic market are now FFVs, facilitating economic recycling and contributing to CO2 reduction

Case study on the introduction of ethanol in Brazil (FFV market)

Policy promotion	Manufacturer	• Tax breaks for car manufacturer (ethanol-fueled vehicle including FFV)
in FFV	End-User	 Tax reduction for vehicle purchase and licensing Exemption of tax for ethanol-fueled commercial transport Flat Road Tax reduction

D Registration of new car by fuel type (k unit)

Source: Government Intervention to Strengthen the Ethanol Sector-ELLA, The Story of Brazil's Ethanol Programme-ELLA, Brazil's Biofuel Annual Report-USDA, Brazilian Automotive Industry Report

Brazil is advancing the introduction of flex HEVs as part of its efforts to achieve a decarbonized society, which are expected to reduce CO2 emissions

ΕU

35

Effects of ethanol utilization in Brazil

CO2 Reduction Effect

The Japan Times 6th Mar. 2024

Toyota is increasing its bet on flex fuel-hybrid vehicles with an investment of 11 billion reais (\$2.2 billion) in its Brazilian operations between 2023 and 2030

Toyota's competitors have also been pumping money into Brazil this year. U.S. giant General Motors announced plans to invest 7 billion reais in January, with Volkswagen of Germany setting aside 9 billion reais the following month along with 5.5 billion reais from South Korea's Hyundai Motor.

All of them are seeking to begin the electrification of their product lines in the Brazilian market, investing in flexhybrid versions, which combine electric and combustion engines that can be fueled with gasoline or ethanol.

Source : https://www.japantimes.co.jp/business/2024/03/06/companies/toyota-investment-brazil-hybrid/ © 2024 Deloitte Consulting Southeast Asia

Source : Data of JETRO

Potential of bioethanol to combat challenges

Drawing an analogy from Brazil, Indonesia's gasoline market presents a compelling opportunity to leverage its abundant natural resources; by fostering the development of a bioethanol market, Indonesia can address critical challenges in the energy sector

Utilization of

Domestic Resources

Direction of solutions to key challenges

Air pollution global ranking (IQAir) By country: 14th By city: 7th (Jakarta)

Vehicles account for 44% of Jakarta's air pollution sources

Need to reduce GHG emissions and PN An economy dependent on unprocessed resource exports (primary industry), which are susceptible to trends in global resource demand

Need to upgrade domestic industry to a processing exportoriented economy, which is a higher value-added industry

Transition Away from Reliance on Fossil Fuel

Trade deficit due to significant excess imports of crude oil

Vulnerability in energy security

Increased fuel subsidy spending

Need to move away from dependence on crude oil imports

Solving key challenges by forming a bioethanol market from the own natural resources (sugarcane molasses/palm oil residues)

Steadily promote initiatives to increase sugar self-sufficiency through the promotion of 1G ethanol using sugarcane waste molasses, thereby taking the first steps towards creating a market and supply chain

1G Sugarcane molasses supply feasibility

* Assumption: 40% of the waste molasses is allocated to ethanol production (based on current status: 40% for ethanol use, 35% MSG, 25% for export)

Effects of estimated ethanol production from Presidential Decree No.40/2023 A press release by the Ministry of Investment in response to Presidential Decree No. 15/2024, presented in April 2024, stated the direction of an additional 2 million ha of agricultural land in Papua, which could lead to higher ethanol production than projected above

Source : Sugar Annual USDA, Food and Agriculture Organization of the United Nations (FAO)

Upon the successful implementation of 2G technology, it is anticipated that 2G ethanol derived from palm residues could not only satisfy domestic vehicle fuel demand but also generate a potential surplus

2G Palm oil residues supply feasibility

The deployment of 2G bioethanol derived from palm oil residues is projected to deliver significant reductions in GHG emissions over the period 2030 to 2060

Improvement of air quality (1/2)

Source : Estimation by the project based on various datapoints © 2024 Deloitte Consulting Southeast Asia

In-house assessments conducted by a Japanese OEM have indicated a propensity for ethanol-petrol blends to enhance PN emission profiles

Improvement of air quality (2/2)

Air pollution global ranking (IQAir) By country: 14th By city: 7th (Jakarta)

Vehicles account for 44% of Jakarta's air pollution sources

Need to reduce GHG emissions and PN

Effect of ethanol on Exhaust Emission (PN) DI Eng 1.2 1.5 1 1.4 0.8 PN ratio sPMI* 0.6 0.4 1.3 0.2 0 1.2 10% 0% 20% EtOH vol%

*sPMI: Simplified PM Index \rightarrow Quantified impact on PM emissions

Source: in house data

The introduction of bioethanol is anticipated to generate new jobs across the entire bioethanol value chain, while facilitating efficient use of waste natural resources

Utilization of domestic resources

Source: Estimation by the project based on Indonesia Input Output Table Database by BPS (2016), World Input Output Table Database by WIOD (2014), Socio Economic Accounts Database by WIOD (2014)

© 2024 Deloitte Consulting Southeast Asia

The adoption of bioethanol is projected to diminish crude oil imports, consequently mitigating the trade deficit and bolstering energy security

Transition Away from Reliance on Fossil Fuel

Trade deficit due to significant excess imports of crude oil

Vulnerability in energy security

Increased fuel subsidy spending

Need to move away from dependence on crude oil imports

Source : Estimation by the project based on various datapoints © 2024 Deloitte Consulting Southeast Asia

Way forward

To cultivate a robust market for bioethanol as a viable gasoline alternative in Indonesia and address critical challenges within the energy sector, the following actions are recommended;

Proposals for bioethanol deployment

Formulating comprehensive roadmap outlining key milestones on both supply and demand side to facilitate sustainable proliferation of bioethanol

- Demand side: Formulate a plan for blending rate transitions, study introduction of FFV and Flex HEV
- □ Supply side: Formulate a supply plan for 1G sugarcane waste molasses as a transitional measure

Determine target timing for introduction of 2G palm oil residue

Concurrently fostering the development of a robust supply chain and a strong demand base for 1G ethanol derived from sugarcane waste molasses

- Demand side: Identify targets (sales areas, mixing rates, target RON)
- Supply side: Develop an additional 700 K Ha of land to secure supply/promote productivity-enhancing activities
- □ Supply and demand: Study the policy framework needed to promote deployment

Initiating a comprehensive investigation into the feasibility of establishing an ecosystem for the utilization of palm oil residues in 2G bioethanol production

- Consideration of new industrial development such as ATJ and solid fuels using palm oil residues to reduce ethanol costs
- Examine the possibility of earning foreign currency by exporting the above products and creating a source of subsidies through export taxes, etc.
- **Consider further ethanol demand creation through the introduction of FFV and flex HEVs**

The establishment of a robust bioethanol market in Indonesia is likely to encounter numerous hurdles. Resolute backing from the Indonesian government will be indispensable in overcoming these obstacles

Challenges to realization

1G Sugarcane waste molasses

- Study and implement a promotion scheme for the early realization of 700 K Ha of additional plantation land
- Support producers to increase productivity / Study and implement a promotion scheme to realize improved efficiency in sugarcane production processes (production management, cutting and transportation)
- □ Identification and early implementation of reasonable and effective policies

2G Palm oil residues

- **Technology:** Early establishment of 2G technology
- **Supply chain:** Study/establish feedstock collection schemes and distribution supply chains
- **Cost:** Consider other businesses that make effective use of residues to reduce ethanol costs
- **Policy:** Study of policies such as tax incentives for producers and consumers.

Consideration of schemes to generate subsidy funding

Let's work together to become the World #1 producer and exporter of biofuels, which are needed around the world, while steadily solving Indonesia's own challenges first

Proposed activities to solve challenges

Many Japanese companies have <u>high hopes and</u> <u>interest</u> in the bioethanol potential of Indonesia utilization of ISFM

Japan-Brazil summit on 3rd May 2024

The two leaders launched a new international framework, the ISFM, to achieve carbon neutrality together with global partners by combining Brazil's high potential in decarbonized fuels such as biofuels and synthetic fuels with high-performance Japanese mobility equipment such as hybrid engines.

> Comprehensive global promotion of Bioethanol x FFV/HEV combinations

> > Source: https://www.mofa.go.jp/mofaj/la_c/sa/br/pageit_000001_00603.html

© 2024 Deloitte Consulting Southeast Asia

Monitor Deloitte.

Important notice

This document has been prepared by Deloitte Consulting Southeast Asia (as defined below) for the sole purpose of providing a proposal to the parties to whom it is addressed in order that they may evaluate the capabilities of Deloitte Consulting Southeast Asia to supply the proposed services.

The information contained in this document has been compiled by Deloitte Consulting Southeast Asia and includes material which may have been obtained from information provided by various sources and discussions with management but has not been verified or audited. This document also contains confidential material proprietary to Deloitte Consulting Southeast Asia. Except in the general context of evaluating our capabilities, no reliance may be placed for any purposes whatsoever on the contents of this document or on its completeness. No representation or warranty, express or implied, is given and no responsibility or liability is or will be accepted by or on behalf of Deloitte Consulting Southeast Asia or by any of its partners, members, employees, agents or any other person as to the accuracy, completeness or correctness of the information contained in this document or any other oral information made available and any such liability is expressly disclaimed.

This document and its contents are confidential and may not be reproduced, redistributed or passed on, directly or indirectly, to any other person in whole or in part without our prior written consent.

This document is not an offer and is not intended to be contractually binding. Should this proposal be acceptable to you, and following the conclusion of our internal acceptance procedures, we would be pleased to discuss terms and conditions with you prior to our appointment.

In this document, references to Deloitte are references to Deloitte Consulting Southeast Asia which is an affiliate of Deloitte Southeast Asia Ltd, a member firm of Deloitte Touche Tohmatsu Limited.

About Deloitte

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee ("DTTL"), its network of member firms, and their related entities. DTTL and each of its member firms are legally separate and independent entities. DTTL (also referred to as "Deloitte Global") does not provide services to clients. Please see <u>www.deloitte.com/about</u> to learn more about our global network of member firms.

Deloitte provides audit, consulting, financial advisory, risk management, tax and related services to public and private clients spanning multiple industries. Deloitte serves four out of five Fortune Global 500[®] companies through a globally connected network of member firms in more than 150 countries and territories bringing world-class capabilities, insights, and high-quality service to address clients' most complex business challenges. To learn more about how Deloitte's approximately 225,000 professionals make an impact that matters, please connect with us on Facebook, LinkedIn, or Twitter.

About Deloitte Southeast Asia

Deloitte Southeast Asia Ltd – a member firm of Deloitte Touche Tohmatsu Limited comprising Deloitte practices operating in Brunei, Cambodia, Guam, Indonesia, Lao PDR, Malaysia, Myanmar, Philippines, Singapore, Thailand and Vietnam – was established to deliver measurable value to the particular demands of increasingly intra-regional and fast growing companies and enterprises.

Comprising 270 partners and over 7,300 professionals in 25 office locations, the subsidiaries and affiliates of Deloitte Southeast Asia Ltd combine their technical expertise and deep industry knowledge to deliver consistent high quality services to companies in the region.

All services are provided through the individual country practices, their subsidiaries and affiliates which are separate and independent legal entities.

Disclaimer

This communication contains general information only, and none of Deloitte Touche Tohmatsu Limited, its member firms, or their related entities (collectively, the "Deloitte network") is, by means of this communication, rendering professional advice or services. No entity in the Deloitte network shall be responsible for any loss whatsoever sustained by any person who relies on this communication.

© 2024 Deloitte Consulting Southeast Asia

Important notice

This document has been prepared by Deloitte Consulting Southeast Asia (as defined below) for the sole purpose of providing a proposal to the parties to whom it is addressed in order that they may evaluate the capabilities of Deloitte Consulting Southeast Asia to supply the proposed services.

The information contained in this document has been compiled by Deloitte Consulting Southeast Asia and includes material which may have been obtained from information provided by various sources and discussions with management but has not been verified or audited. This document also contains confidential material proprietary to Deloitte Consulting Southeast Asia. Except in the general context of evaluating our capabilities, no reliance may be placed for any purposes whatsoever on the contents of this document or on its completeness. No representation or warranty, express or implied, is given and no responsibility or liability is or will be accepted by or on behalf of Deloitte Consulting Southeast Asia or by any of its partners, members, employees, agents or any other person as to the accuracy, completeness or correctness of the information contained in this document or any other oral information made available and any such liability is expressly disclaimed. This document and its contents are confidential and may not be reproduced, redistributed or passed on, directly or indirectly, to any other person in whole or in part without our prior written consent. This document is not an offer and is not intended to be contractually binding. Should this proposal be acceptable to you, and following the conclusion of our internal acceptance procedures, we would be pleased to discuss terms and conditions with you prior to our appointment .

In this document, references to Deloitte are references to Deloitte Consulting Southeast Asia which is an affiliate of Deloitte Southeast Asia Ltd, a member firm of Deloitte Touche Tohmatsu Limited.

About Deloitte

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee ("DTTL"), its network of member firms, and their related entities. DTTL and each of its member firms are legally separate and independent entities. DTTL (also referred to as "Deloitte Global") does not provide services to clients. Please see www.deloitte.com/about for a more detailed description of DTTL and its member firms.

Deloitte provides audit, consulting, financial advisory, risk management, tax and related services to public and private clients spanning multiple industries. With a globally connected network of member firms in more than 150 countries, Deloitte brings world-class capabilities and high-quality service to clients, delivering the insights they need to address their most complex business challenges. Deloitte's more than 225,000 professionals are committed to making an impact that matters. Deloitte serves 4 out of 5 Fortune Global 500[®] companies.

About Deloitte Southeast Asia

Deloitte Southeast Asia Ltd – a member firm of Deloitte Touche Tohmatsu Limited comprising Deloitte practices operating in Brunei, Cambodia, Guam, Indonesia, Lao PDR, Malaysia, Myanmar, Philippines, Singapore, Thailand and Vietnam – was established to deliver measurable value to the particular demands of increasingly intra-regional and fast growing companies and enterprises. Comprising 270 partners and over 7,300 professionals in 25 office locations, the subsidiaries and affiliates of Deloitte Southeast Asia Ltd combine their technical expertise and deep industry knowledge to deliver consistent high quality services to companies in the region.

All services are provided through the individual country practices, their subsidiaries and affiliates which are separate and independent legal entities.

Disclaimer

This communication contains general information only, and none of Deloitte Touche Tohmatsu Limited, its member firms, or their related entities (collectively, the "Deloitte network") is, by means of this communication, rendering professional advice or services. No entity in the Deloitte network shall be responsible for any loss whatsoever sustained by any person who relies on this communication.