事業原簿

作成: 2025年6月

	作成:2025 年 6 月			
プロジェクト名	研究開発型スタートアップの起業・経営人材確保等支援事業 プロジェクト番号 P23007			
担当推進部/ プロジェクトマネー ジャーまたは担当者 及び METI 担当課	スタートアップ支援部 PMgr加藤茉里(2025年6月現在) イノベーション環境局 イノベーション創出新事業推進課			
本事業では、特定の技術シーズを有し、当該技術シーズの活用アイデアを有する「基補人材」を事業化支援人材の下で育成するとともに、研究開発型スタートアップに対業化のための研究開発に係る支援を行うことにより、我が国の企業、大学、研究機関れた技術を基にした研究開発型スタートアップの創出・育成を促進する。 0. 事業の概要 また、起業家候補人材の活動状況等を適宜把握することで、起業家に係る人材の育成を知見の蓄積も図る。さらに、自らが起業またはスタートアップの経営者として対しています。 ことを志向する人材を発掘し、大学等の技術シーズ・大学発スタートアップとのマッ等を実施する。				
1. 怠義・アウトカム	(社会実装)達成までの道筋			
	"ディープテック"とは、特定の自然科学分野での研究を通じて得られた科学的な発見に基づく技術であり、その事業化・社会実装を実現できれば、国や世界全体で解決すべき経済社会課題の解決など社会にインパクトを与えられるような潜在力のある技術。ディープテック領域は自然体ではイノベーションの循環が起きにくいが、その循環が実現できれば社会的課題の解決に資することから、国として支援する必要性が高い。			
	我が国においては、研究開発費支出に占める大企業の研究開発費割合が 9 割程度となっており、研究開発投資に関して事業会社は有力なプレイヤーの一つ。他方、先述のとおり、事業会社で生み出された技術のうち事業化されないものの 6 割程度が消滅。そうした技術を活用を基にした起業・事業化を後押しすることは、投資された資源の有効活用という観点から、社会的・経済的価値を有している。			
	〈実施項目 1〉ディープテック分野での人材発掘・起業家育成事業 (NEP※)開拓コースでは、特定の技術シーズを有する研究機関等に所属する個人及びチーム、自らが特定の技術シーズを有する起業前の個人及びチームまたは他者の技術シーズを活用できる個人及びチームを対象として、技術シーズのビジネス化に向けた逸材の発掘・育成を行う。			
1.1 本事業の位置	躍進コースでは、特定の技術シーズを活用し、その事業化に向けた活動を行う個人及びチーム又は法人を対象として、起業を前提とした起業家育成を行う。			
付け・意義	上記 2 コースを実施することで、ディープテック分野で優れた技術シーズを事業化して推進できる才能ある人材、研究開発型スタートアップの起業家候補を育成し、支援する。			
	*NEP : NEDO Entrepreneurs Program			
	<実施項目 2-1>大学発スタートアップにおける経営人材確保支援事業 (MPM※) 大学等の技術シーズ・大学発スタートアップとのマッチング等を実施する VC 等を対象として、自らが起業またはスタートアップの経営者として参画することを志向する人材を発掘し、大学等の技術シーズ・大学発スタートアップとのマッチング等を実施する。			
	₩MPM: Management Personnel Matching program			
	〈実施項目 2-2〉事業会社等が保有する革新的な技術を活用したカーブアウトによるディープテック・スタートアップ創出等促進事業事業会社が保有する革新的な技術等を活用したカーブアウトによるディープテック・スタートアップを創出する「スタートアップ創出型カーブアウト」の加速・促進に向けて、これまでの国内外の先行事例等の調査やカーブアウトによるディープテック・スタートアップの創出等を実証する			

	_
1.2 アウトカム 成までの道	
1.3 知的財産・ 準化戦略	ディープテック・スタートアップの経営戦略において、研究開発の成果をどう生かして行くかは重要な要素。以下のような取組を実施することで、ディープテック・スタートアップのオープン&クローズ戦略の立案、更には、研究成果の将来的な知財化・標準化を促し、支援していく。 ✓ 採択審査の際の事業性評価及び技術評価において、戦略的なオープン&クローズ戦略を立案している(※)スタートアップが評価されやすい形とする。 ✓ 採択者に対して提供するサポートメニューの一環として、研修において、知財戦略や標準化戦略に関する講座を設ける。 ✓ NEDO が実施する伴走支援の中で、必要に応じて、知財戦略や標準化戦略に詳しい弁理士等の専門家等を紹介し、支援先スタートアップにおける有効な知財戦略の構築を支援する。 ※ 研究成果を将来的にどう活用していくかのシナリオが描けている、特許等による高い模倣障壁の活用が具体化している、標準化対応も含めた市場獲得構想の立案が行われている、等
	ト 2 4 7 7
2.1 アウトカム 標及び達成見 み	 〈実施項目 1〉 NEP 〈アウトカム目標〉〉 ①技術のビジネス化に向けた逸材の発掘・育成コース(躍進コース)では、その育成支援内容に対して支援対象者から高評価(アンケート調査等により回答者の 85%以上から満足と回答)を得ることを目指す。 ②起業を前提とした起業家育成コース(開拓コース)では、採択者の 5 割以上が、事業終了後1 年以内に起業や事業化資金を確保することを目指す。 〈〈達成見込み〉〉 ①事業終了後のアンケートによる満足度(満足、概ね満足と回答した割合)・FY2023 開拓コース: 96%・FY2023 躍進コース: 89%・FY2024 開拓コース: 100%
2.2 アウトプッ 目標及び達 状況	2. 2. 3. 4 - 15 In 40W

		今後も採択者	者数を増やす		目標達成見	 見込み。		
		<実施項目 2> MPM						
		〈〈アウトプット目標〉〉						
		(中間目標)ス を、中間評価時			営人材が関 <i>-</i>	与することとれ	なる大学発ス	タートアップ数
					営人材が関与	与することとな	なる大学発ス	タートアップ数
		を、5年間の累		:以上とする。				
		102/94/102	<<達成状況:中間目標>> 2023 年度事業者: 24 社					
		,	2024 年度事業者:5 社					
3 7	マネジメント	中間評価時点で	で、最終目標	まで達成。				
3. 3		<実施項目1>	> NEP					
		・起業家候補。 PoC (Proof of	人材/実施法 Concept:	人を公募し、 概念実証)等	審査を行っ	った上で、そ <i>0</i> 援を行う。)ビジネスプ	施を契約する。 ランの構築及び 行った上で支援
		<実施項目 2>	→ MPM					
3. 1	実施体制	2 Thi 2 Thi		し、審査を行	った上で、糸	経営人材マック	チングルート	の多様性検証の
		<実施項目 2- プテック・スタ				技術を活用した	こカーブアウ	トによるディー
			、アクセラ	レーター等を	公募し、審	査を行った上 [~]	で、事業会社	におけるカーブ
		事業期間:202	3 年度~202	7 年度				
3.2 考 <i>え</i>	受益者負担の え方	契約等種別: <実施項目1 <実施項目2 ※カーブアウ	2>MPM:委	託(NEDO 負担	且率 100%)	100%、カーブ 0%)	アウト:補助]率 3/4)
3. 3	研究開発計画							
		本事業は、ディ本事業固有の研				が行う研究開る	巻に対する支	援であるため、
		他方 支援先之	スタートア、	ップに関して	は、広墓(キ	采択審査) 時/	で研究開発の	内容及び事業期
		間における目標						
		また NFDO が	宝施する伴	走支援の中で	支援失る	タートアップレ	こおける研究	開発の進捗状況
	研究開発計画	を継続的に把握				, 1,,,,,	C4017 & 1017L	
14	· 八九用光	[甾炔: 五玉	EVOUSS	FY2024	EVOOSE	FY2026	EV2027	· 公分百
		[単位:百万 円]	FY2023	F12024	FY2025	F12020	FY2027	総額
		予算額	1, 479	1, 419	1, 463	-	-	-
		(交付金) 予算額	1,029	_	_	_	_	_
		(補正) ※各年度予算名	質は当年度当	4初のもの。!	 執行額総額と	・は一致しない) ₀	
 	情勢変化への対	テレワークの拡大等の世間的な潮流を鑑み、審査会・公募説明会・イベント開催はオンライ						
J.	芯	ンや現地+オンラインのハイブリッド開催を実施した。						
	中間評価結果へ の対応	-						
	ノスカルい							

	事前評価	2023 年度実施 担当部 イノベーション推進部
評価に関する 中間評価		2025 年度 中間評価実施
	終了時評価	2028 年度 終了時評価実施予定

採択テーマー覧 <実施項目 1 > NEP

2023 年度 開拓コース

テーマ名	採択者名	事業期間
低利用水産資源を活用した、メタン抑制効果に優れた飼料添加	大砂 百恵	2023年6月~2024年3月
物の開発		
異分野の学生が融合して立ち上げる!持続可能で新たな陸上養	上野 裕太郎	2023年6月~2024年3月
殖水産業の実現		
一酸化炭素中毒解毒剤「hemoCD」の ビジネス仮説検証	唐杉 慶一	2023年6月~2024年3月
力触覚を有する次世代汎用ロボットと食品製造業の改革	牧 駿	2023年6月~2024年3月
超高感度磁気センサを用いた次世代メタバース用インター	大前 緩奈	2023年6月~2024年3月
フェース		
mRNA ワクチンの技術と AI の応用による新予防薬の開発	中井 洸我	2023年6月~2024年3月
アメリカミズアブの卵供給事業に向けたビジネス展開	大木 碩仁	2023年6月~2024年3月
冷熱蓄電 × IoT による冷凍倉庫の仮想発電所(VPP)化について	水野 竣介	2023年6月~2024年3月
人工神経技術による構造物の健全性診断	清住 空樹	2023年6月~2024年3月
女性のホットフラッシュ症状を治療する医療機器開発	金田 恵理	2023年6月~2024年3月
過硝酸殺菌技術を用いた感染創傷治療デバイス開発	山田 翔平	2023年6月~2024年3月
筋力トレ効果を増幅し、実感できる次世代筋電システムの研究	衣笠 竜太	С
開発		
組換え大腸菌によるマイクロプラスチックの回収・販売事業	竹内 航平	2023年6月~2024年3月
量産型チップ上グラフェンの集積デバイス実装事業	牧 英之	2023年6月~2024年3月
スマートフォン接続型眼底カメラと AI 遠隔診療システムの構築	水野 優	2023年6月~2024年3月
光合成ハウスプロジェクト	吉崎 万莉	2023年6月~2024年3月
知的・発達障がい者の職務作業の自立習得支援システムの実現	近藤 雄也	2023年6月~2024年3月
自動微分を用いた逆設計技術による経験と勘を超えた材料・デ	乾 幸地	2023年6月~2024年3月
バイス自動設計		
導電糸刺繍を用いたアミューズメント施設における新たなイン	篠田 和宏	2023年6月~2024年3月
タラクション体験の創出		
金属有機構造体等の新素材を用いて大気中の水を回収する技術	川本 亮	2023年6月~2024年3月
についての検証		
"働く"を起点に、老後 40 年間を豊かに生きるレジリエンス	滝沢 直	2023年6月~2024年3月
集団を作り出す、 シニア向けプラットフォーム「D-attend		
(ディー・アテンド) 」	* n #=	
AI×バイタルデータ解析による体内時計に最適化するワークスタイル提案システムの構築	新田 理恵	2023年6月~2024年3月
現場に導入可能な畜産製品の GHG 排出量算定手法の開発	蛯谷 夏海	2023年6月~2024年3月
超薄型有機太陽電池を用いたディスポーザブルソーラーシール	岩松 琢磨	2023年6月~2024年3月
宇宙天気 AI 予報技術の深化に向けた研究開発及び活用方法に関する探索活動	高崎 宏之	2023年6月~2024年3月
機能性海藻生産プラットフォームの開発	難波 卓司	2023年6月~2024年3月
ロボット技術を応用した人の運動分析とトレーニング改善サー	青木治雄	2023年6月~2024年3月
ビス	H / I II AE	2020 - 071 2021 - 071
Chat GPT を活用した、 医師専用の心房細動生活指導 アプリの	妹尾 恵太郎	2023年6月~2024年3月
開発	= '	
麦栽培等を例とした、省力化、省人化、収量・品質アップを目	橋本 綾子	2023年6月~2024年3月
指すスマート農業プロジェクト		
	島﨑 航平	2023年6月~2024年3月
すべての周波数を可視化するリアルタイム振動カメラ	F-3::1 /4/2 1	
すべての周波数を可視化するリアルタイム振動カメラ 化学農薬の代替となる殺菌水の実用化検討	岡 好浩	2023年6月~2024年3月
		2023年6月~2024年3月 2023年6月~2024年3月
化学農薬の代替となる殺菌水の実用化検討	岡 好浩	

2024 年度開拓コース

テーマ名	採択者名	事業期間
ワイヤレス電力伝送技術利用した AGI を日常生活に統合するた	饗庭 陽月	2024年4月~2025年3月
めの HCI デバイスの開発		

持続可能なリン資源循環を創るビジネスモデルの構築	青柳 拓也	2024年4月~2025年3月
目元の情報から覚醒度を推定する技術の事業化	阿部 高志	2024年4月~2025年3月
高配向カーボンナノチューブ膜を用いた光検出器による光診断	安倍 悠朔	2024年4月~2025年3月
技術および光通信技術の革新		
居住者に主体的に関与する"対話型スマートハウス AI"の開発	五十嵐 俊治	2024年4月~2025年3月
ウシの子宮内環境を評価するサービス	内山 淳平	2024年4月~2025年3月
フレイルの尿中分子マーカーを用いたフレイルリスク評価ビジ	岡 卓也	2024年4月~2025年3月
ネス		
AI 技術を活用した自動気管挿管装置の開発事業	奥田 紘隆	2024年4月~2025年3月
認知症の進行遅延薬の創製	尾﨑 拓	2024年4月~2025年3月
グリーン水素製造に向け、AIを活用したペロブスカイト型の触媒材料の開発	織田 藍作	2024年4月~2025年3月
With U	温てい	2024年4月~2025年3月
生成 AI による産業安全のリスクアセスメント	梶山 一臣	2024年4月~2025年3月
「AI×放射線」による痛くないがん療法の開発と臨床稼働検証	勝田 義之	2024年4月~2025年3月
	1117th 11 40-11-	0004 57 4 5 0005 57 0 5
個人の遺伝子検査等のバイオデータを生活周辺サービスに連携 し個人の QOL を向上させる、RAG を活用した AI システム構築	川端 瞭英	2024年4月~2025年3月
ハプティクス(力触覚)技術を用いた製造業現場の改革	菊池 舞	2024年4月~2025年3月
肉体年齢指標測定アルゴリズムの開発	木村 朱門	2024年4月~2025年3月
Good Wood Solutions (森林一木材の価値最大化診断)	木村 優太	2024年4月~2025年3月
マルチモーダル AI による学習支援システムの開発	雲居 玄道	2024年4月~2025年3月
クレーン運転訓練シミュレータ事業から月面建設機械の遠隔操	纐纈 真啓	2024年4月~2025年3月
作事業へ	1 1/4 1/27	0004 57 4 5 0005 55 0 5
どこでも DAC 静音かつ安全性の高い次世代推力生成機構「サイクロロー	小松 芙羽 齊藤 学	2024年4月~2025年3月
新音が7女生性の高い状態代推力生成機構「リイクロローター」の実用化	質膝 子	2024年4月~2025年3月
イネ種子を活用したワクチンおよび医薬品抗体生産のビジネス	澤崎 佑太	2024年4月~2025年3月
展開 サメ由来世界最小抗体の次世代抗体医薬品への応用	周薇	2024年4月~2025年3月
イオンの力で接着!? 単一イオン伝導性接着剤による革新的	須藤 拓	2024年4月~2025年3月
畜電池の開発	· 分形 14	2021 - 171 2020 - 071
Maya-mind	Sebastian Subhash Revankar, Gajanan	2024年4月~2025年3月
シロアリ由来の水素生成事業~シロアリ・微生物が日本を救	髙橋 英眞	2024年4月~2025年3月
う!∼		
アルツハイマー病の MRI による超早期診断手法の開発と社会実装	舘脇 康子	2024年4月~2025年3月
巻 遺伝子上に存在する「G4 構造」に結合する低分子医薬品の創出	寺 正行	2024年4月~2025年3月
に向けた基盤技術の実用化検討	,1 777.11	2021 - 171 2020 - 371
クラウドシーディングによる気象制御 ~アメフラシ・アメチラ	寺島 圭希	2024年4月~2025年3月
シ事業~		
Shamba: ブランドと消費者を守り高質品物社会向け最新 EC	Tran Thi Hong	2024年4月~2025年3月
シースルー型 AR グラスに遠隔手話通訳映像や字幕を投影する新しい形態の補聴器の開発	那珂 慎二	2024年4月~2025年3月
しい形態の補悶器の開発 慢性腎臓病(CKD)創薬を加速させる ヒト患者由来腎オルガノイ	仲尾 祐輝	2024年4月~2025年3月
慢性自腐物(CAD) 創業を加速させる こ下思有田未育オルガノイ ド 創薬プラットフォーム	口小台 1/4//中	2021 〒 1 月 - 2020 中 3 月
アニサキスアレルギー検査試薬開発と画像診断補助ソフトの作	新妻 雄介	2024年4月~2025年3月
成		
3Dプリント技術による高精細な義耳と軟骨伝導補聴器を組み合	西山 崇経	2024年4月~2025年3月
わせた小耳症例への非侵襲的かつ審美・機能同時改善を行う革		
新的治療法の確立と事業化 エッジ AI 向け低消費エネルギープロセッサ	野尻 悠太	2024年4月~2025年3月
本ツンAI 同り返信賃エイルイーノロビッリ 拡散モデルに基づく知能を有する商品陳列廃棄ロボットの開発	野田 雅貴	2024年4月~2025年3月
宇宙環境の「生命」課題を解決	蓮見 大聖	2024年4月~2025年3月
十田泉境の「生町」課題を解伏 世界初のナノ微粒子による画期的ながん治療法の開発	日高 聡	2024年4月~2025年3月 2024年4月~2025年3月
有機相転移材料を活用したワイヤレススマート農場	平田 裕也	2024年4月~2025年3月
AIx ドローンによる物流倉庫棚卸し自動化実現への探索	廣津 和哉	2024年4月~2025年3月
AIX ドローンによる物価倉庫棚卸し日動化美児への採業 太陽活動データ統合システムの研究開発について	藤野 沙季	2024年4月~2025年3月
	がら ひす	2021 十 1 月 2020 十 9 月

セルロースナノファイバー(CNF)を用いた多機能性分散液の作製	藤原 由奈	2024年4月~2025年3月
目の活動のウェアラブルセンシング技術の応用事業の開拓	双見 京介	2024年4月~2025年3月
メタバース空間における触覚の高度化を実現する新しい小型触	部矢 明	2024年4月~2025年3月
覚デバイスの開発・販売事業		
動物の気持ちを理解する独自 AI 開発	松戸 誠人	2024年4月~2025年3月
医用画像を主とした人工知能教師データ作成サービスの創出	松元 友暉	2024年4月~2025年3月
Innodroid	三谷 竜樹	2024年4月~2025年3月
AI Mahozin - プロンプトコミュニティ活性化による AI	村上 貴人	2024年4月~2025年3月
Driven 社会を牽引するプラットフォームの構築 -		
超小型探査機と機械学習による小惑星資源探査	安福 亮	2024年4月~2025年3月
医療診断装置向け T1Br (臭化タリウム) 半導体γ線センサーの	山石 直也	2024年4月~2025年3月
ビジネス仮説検証		
簡便な客観的意欲評価法を確立し、 高齢者のウェルビーイング	山本 夏希	2024年4月~2025年3月
を推進する		
素材で世界を変える~CNFのキラーアプリケーションの開発~	足立 零生	2024年4月~2025年3月

2025 年度開拓コース

藤原 雄羽 2025 年 4 月~2026 年 3 月 2025 年 4 月~2026 年	テーマ名	採択者名	事業期間
支援事業	SkillSync	藤原 捷羽	2025年4月~2026年3月
	合成開口レーダ技術を活用した土砂崩れの被害把握による復旧	大平 尚輝	2025年4月~2026年3月
大量廃棄される養殖コンプの仮根"ガニアシ"の再利用方法の 提案 ボータブハ内視鏡トレーニングシステムの開発 素見 直 2025 年 4 月~2026 年 3 月 光変換フィルムでぎょギョ魚 AI 支援型多専門医チャットアプリケーションによる個別医療ア セスメントの実現 AI インタビュー×ネットワーク分析による多様な声の可視化シ ステム 着られるエレクトロニクスの社会実装を加速させる汎用 "Nuno" ブラットフォームの開発 産属合金やセラミックを用いたエネルギー貯蔵技術の実用化 ジャンボタニシ検知 AI を活用したジャンボタニシ誘引駅の開発 連 愛斗 全属合金やセラミックを用いたエネルギー貯蔵技術の実用化 ジャンボタニシ検知 AI を活用したジャンボタニシ誘引駅の開発 深層生成モデルと仮想現実感による没入的物語編集体験の構築 で指したジャンボタニシ誘引駅の開発 連 整本 生産をデルと仮想現実感による没入的物語編集体験の構築 で指したジャンボタニシ誘引駅の開発 連 整本 生産をデルと仮想現実感による没入的物語編集体験の構築 で指したジャンプリー半自動車いす たるとできる!」を引き出す ハンズフリー半自動車いす 大田有希力 下eeling 空間再生のための IoT デバイス連携 フレームワークの構築 培養内による持続可能な社会の創造 歯房のに影体業における注測技能評価を用いた作業者支援シス テムの開発 ペットの思い出データを活用したデジタルペットサービスの創 樹園のは影体業における注測技能評価を用いた作業者支援シス テムの開発 ペットの思い出データを活用したデジタルペットサービスの創 出 AI による遺伝子発現の復元 複合現実感(Mixed Reality)を用いた新しいリハビリテーション 支援 膜と促進酸化処理を用いたオンサイト型水再利用システムの実 開化 世界で一番サーキュラーなモーター「motoloop」 メドプレ(MedPre): 血液バイオマーカーと AI 解析を活用した アルツハイマー型認知症の超早期可視化と個別化介入サービス デシタルツインを活用した農業生産イノベーション AI による次性代型連線版の卵出・ 本型 2025 年 4 月~2026 年 3 月 と025 年 4 月~2026 年 3 月 と1 日 ・ 2025 年 4 月~2026 年 3 月 と2025 年 4 月~2026 年 3 月	支援事業		
提案 ボータブル内視鏡トレーニングシステムの開発 第見 直 2025 年 4 月~2026 年 3 月 ※変換フィルムでぎょギョ魚 AI 支援型多専門医チャットアプリケーションによる個別医療ア 深野晋之介 2025 年 4 月~2026 年 3 月 セスメントの実現 AI インタビュー×ネットワーク分析による多様な声の可視化シ ステム 着られるエレクトロニクスの社会実装を加速させる汎用 第田 直人 2025 年 4 月~2026 年 3 月 を展生なとから変更 2025 年 4 月~2026 年 3 月 金属合金やセラミックを用いたエネルギー貯蔵技術の実用化 2025 年 4 月~2026 年 3 月 ※※留生成モデルと仮規現実感による没入的物語編集体験の構築 2025 年 4 月~2026 年 3 月 アオノリ由来バイオプラスチック 佐藤 悠世 2025 年 4 月~2026 年 3 月 アオノリ由来バイオプラスチック 佐藤 悠世 2025 年 4 月~2026 年 3 月 でありまります。 2025 年 4 月~2026 年 3 月 であります。 2025 年 4 月~2026 年 3 月 でカールをが取ります。 2025 年 4 月~2026 年 3 月 でカールをが取ります。 2025 年 4 月~2026 年 3 月 であります。 2025 年 4 月~2026 年 3 月 であります。 2025 年 4 月~2026 年 3 月 であります。 2025 年 4 月~2026 年 3 月 を藤内による持続可能な社会の創造 周田 健成 2025 年 4 月~2026 年 3 月 を養内による持続可能な社会の創造 周田 健成 2025 年 4 月~2026 年 3 月 を養内による持続可能な社会の創造 周田 健成 2025 年 4 月~2026 年 3 月 を満聞のは影作業における注湯技能評価を用いた作業者支援シス 布施 伶旺 2025 年 4 月~2026 年 3 月 がよめの開発 ベットの思い出データを活用したデジタルペットサービスの創 出 AI による遺伝子発現の復元 松田 泰斗 2025 年 4 月~2026 年 3 月 接後の異実感(Mixed Reality)を用いた新しいリハビリテーション 実験と促進酸化処理を用いたオンサイト型水再利用システムの実 竹内 悠 2025 年 4 月~2026 年 3 月 現代・電サーキュラーなモーター「motoloop」 2025 年 4 月~2026 年 3 月 またる遺伝子発現の復元 松田 泰門 2025 年 4 月~2026 年 3 月 北京で、後の保全・第 月 2025 年 4 月~2026 年 3 月 はよる近代空海体政脈の関止 と2025 年 4 月~2026 年 3 月 マイクロデバイスを用した農業生産イノベーション と 5 6 6 2025 年 4 月~2026 年 3 月 マイクロデバイスを用いた宇宙開発のための高機能自動細胞培 野田 笙太 2025 年 4 月~2026 年 3 月 マイクロデバイスを用いた宇宙開発のための高機能自動細胞培 野田 笙太 2025 年 4 月~2026 年 3 月		荘林幸太郎	2025年4月~2026年3月
ボータブル内視鏡トレーニングシステムの開発	大量廃棄される養殖コンブの仮根"ガニアシ"の再利用方法の	辻井 豪佑	2025年4月~2026年3月
 光変換フィルムでぎょギョ魚 佐々木龍亜 2025年4月~2026年3月 AI 支援型多専門医チャットアプリケーションによる個別医療アセスメントの実現 AI インタビュー×ネットワーク分析による多様な声の可視化システム 着られるエレクトロニクスの社会実装を加速させる汎用 富田 直人 2025年4月~2026年3月 登会議会のでは、1000年3月 金属合金やセラミックを用いたエネルギー貯蔵技術の実用化 山口 奈々 2025年4月~2026年3月 変みに放売する新規多孔質材料の開発 運受斗 2025年4月~2026年3月 変を属合金やセラミックを用いたエネルギー貯蔵技術の実用化 山口 奈々 2025年4月~2026年3月 変を属合金やセラミックを用いたエネルギー貯蔵技術の実用化 加口 奈々 2025年4月~2026年3月 変を属と成モデルと仮想現実底による没入的物語編集体験の構築 第池 拓仁 2025年4月~2026年3月 変を選を取がたりたのであまり、ままままままままままままままままままままままままままままままままままま	提案		
AI 支援型多専門医チャットアプリケーションによる個別医療アセスメントの実現 AI インタビュー×ネットワーク分析による多様な声の可視化システム 着られるエレクトロニクスの社会実装を加速させる汎用 常田 直人 2025 年 4 月~2026 年 3 月 "Nuno" ブラットフォームの開発 運 愛斗 2025 年 4 月~2026 年 3 月 "Nuno" ブラットフォームの開発 アムラム 会議を対策的に除去する新規多孔質材料の開発 運 愛斗 2025 年 4 月~2026 年 3 月 金属合金やセラミックを用いたエネルギー貯蔵技術の実用化 山口 奈々 2025 年 4 月~2026 年 3 月 ジャンボタニシ検知 AI を活用したジャンボタニシ誘引駅の開発 紫池 柘仁 2025 年 4 月~2026 年 3 月 ジャンボタニシ検知 AI を活用したジャンボタニシ誘引駅の開発 紫池 柘仁 2025 年 4 月~2026 年 3 月 アオノリ由来バイオブラスチック 佐藤 悠世 2025 年 4 月~2026 年 3 月 中継発電所における井戸畑削の自動化 平田 泰之 2025 年 4 月~2026 年 3 月 「もっとできる!」を引き出す ハンズフリー半自動車いす 大田有希乃 2025 年 4 月~2026 年 3 月 「もっとできる!」を引き出す ハンズフリー半自動車いす 大田有希乃 2025 年 4 月~2026 年 3 月 培養内による持続可能な社会の創造 岡田 健成 2025 年 4 月~2026 年 3 月 培養内による持続可能な社会の創造 岡田 健成 2025 年 4 月~2026 年 3 月 時間の注湯作業における注湯技能評価を用いた作業者支援シス 布施 伶旺 2025 年 4 月~2026 年 3 月 出 AI による遺伝子発現の復元 松田 泰斗 2025 年 4 月~2026 年 3 月 世界で一番サーキュラーなモーター「motoloop」 鳥越 誠也 2025 年 4 月~2026 年 3 月 アンツハイマー型認知症の超早期可視化と個別化介入サービス だり McdPre): 血液パイオマーカーと AI 解析を活用した アンツハイマー型認知症の超早期可視化と個別化介入サービス だい McdPre): 血液パイオマーカーと AI 解析を活用した アンツハイマー型認知症の超早期可視化と個別化介入サービス 意 整 2025 年 4 月~2026 年 3 月 20	ポータブル内視鏡トレーニングシステムの開発	鷲見 直	2025年4月~2026年3月
セスメントの実現 AI インタビュー×ネットワーク分析による多様な声の可視化システム 着られるエレクトロニクスの社会実装を加速させる汎用		佐々木龍亜	2025年4月~2026年3月
AI インタビュー×ネットワーク分析による多様な声の可視化システム 着られるエレクトロニクスの社会実装を加速させる汎用 「窓田 直人 2025 年 4 月~2026 年 3 月 を 2025 年 4 月~2026 年 3 月 で 2025 年 4 月~2026 年 3 月 を 2025 年 4 月~2026 年 3 月 を 2025 年 4 月~2026 年 3 月 を 2025 年 4 月~2026 年 3 月 で 2025 年 4 月~2026 年 3 月 を 2025 年 4 月~2026 年 3 月 の 2025 年 4 月~2026 年 3 月	AI 支援型多専門医チャットアプリケーションによる個別医療ア	澤野晋之介	2025年4月~2026年3月
常られるエレクトロニクスの社会実装を加速させる汎用			
常いno" ブラットフォームの開発 PFAS を効率的に除去する新規多孔質材料の開発	AI インタビュー×ネットワーク分析による多様な声の可視化シ	石井 大智	2025年4月~2026年3月
Nuno プラットフォームの開発 正 愛斗			
正 愛斗		富田 直人	2025年4月~2026年3月
金属合金やセラミックを用いたエネルギー貯蔵技術の実用化			
ディンボタニシ検知 AI を活用したジャンボタニシ誘引期の開発	PFAS を効率的に除去する新規多孔質材料の開発	運 愛斗	2025年4月~2026年3月
深層生成モデルと仮想現実感による没入的物語編集体験の構築 三浦 康平 2025 年 4 月~2026 年 3 月 アオノリ由来バイオプラスチック 佐藤 悠世 2025 年 4 月~2026 年 3 月 地熱発電所における井戸掘削の自動化 平田 泰之 2025 年 4 月~2026 年 3 月 「もっとできる!」を引き出す ハンズフリー半自動車いす 太田有希乃 2025 年 4 月~2026 年 3 月 空間再生のための IoT デバイス連携 フレームワークの構築 浅野 悠人 2025 年 4 月~2026 年 3 月 培養肉による持続可能な社会の創造 岡田 健成 2025 年 4 月~2026 年 3 月 培養肉による持続可能な社会の創造 岡田 健成 2025 年 4 月~2026 年 3 月 安上の注湯作業における注湯技能評価を用いた作業者支援シス 方 施 伶旺 2025 年 4 月~2026 年 3 月 2025 年	金属合金やセラミックを用いたエネルギー貯蔵技術の実用化	山口 奈々	2025年4月~2026年3月
アオノリ由来バイオプラスチック佐藤 悠世2025 年 4 月~2026 年 3 月地熱発電所における井戸掘削の自動化平田 泰之2025 年 4 月~2026 年 3 月「もっとできる!」を引き出す ハンズフリー半自動車いす 下eeling太田有希乃2025 年 4 月~2026 年 3 月空間再生のための IoT デバイス連携 フレームワークの構築 培養肉による持続可能な社会の創造 铸造の注湯作業における注湯技能評価を用いた作業者支援シス テムの開発満野 悠人 2025 年 4 月~2026 年 3 月ペットの思い出データを活用したデジタルペットサービスの創出 出 AI による遺伝子発現の復元Kim Hyeonkang 2025 年 4 月~2026 年 3 月AI による遺伝子発現の復元 世界で一番サーキュラーなモーター「motoloop」 メドプレ (MedPre) : 血液バイオマーカーと AI 解析を活用した アルツハイマー型認知症の超早期可視化と個別化介入サービス竹内 悠 2025 年 4 月~2026 年 3 月世界で一番サーキュラーなモーター「motoloop」 メドプレ (MedPre) : 血液バイオマーカーと AI 解析を活用した アルツハイマー型認知症の超早期可視化と個別化介入サービス鳥越 誠也 2025 年 4 月~2026 年 3 月AI による次世代型海賊版の阻止 マイクロデバイスを用いた宇宙開発のための高機能自動細胞培 原 国 2025 年 4 月~2026 年 3 月2025 年 4 月~2026 年 3 月AI による次世代型海賊版の阻止 マイクロデバイスを用いた宇宙開発のための高機能自動細胞培 原野田 笙太2025 年 4 月~2026 年 3 月	ジャンボタニシ検知 AI を活用したジャンボタニシ誘引駬の開発	菊池 拓仁	2025年4月~2026年3月
地熱発電所における井戸掘削の自動化	深層生成モデルと仮想現実感による没入的物語編集体験の構築	三浦 康平	2025年4月~2026年3月
「もっとできる!」を引き出す ハンズフリー半自動車いす Feeling太田有希乃2025 年 4 月~2026 年 3 月空間再生のための IoT デバイス連携 フレームワークの構築 培養肉による持続可能な社会の創造 誘造の注湯作業における注湯技能評価を用いた作業者支援シス テムの開発満野 悠人 岡田 健成 2025 年 4 月~2026 年 3 月ボットの思い出データを活用したデジタルペットサービスの創出 AI による遺伝子発現の復元 機合現実感(Mixed Reality)を用いた新しいリハビリテーション支援 膜と促進酸化処理を用いたオンサイト型水再利用システムの実用化 世界で一番サーキュラーなモーター「motoloop」 メドプレ (MedPre):血液パイオマーカーと AI 解析を活用したアルツハイマー型認知症の超早期可視化と個別化介入サービス竹内 悠 2025 年 4 月~2026 年 3 月 2025 年 4 月~2026 年 3 月AI による次世代型海賊版の阻止 マイクロデバイスを用いた宇宙開発のための高機能自動細胞培 図と 5 年 4 月~2026 年 3 月 2025 年 4 月~2026 年 3 月 2025 年 4 月~2026 年 3 月 2025 年 4 月~2026 年 3 月	アオノリ由来バイオプラスチック	佐藤 悠世	2025年4月~2026年3月
空間再生のための IoT デバイス連携 フレームワークの構築 浅野 悠人 2025 年 4 月~2026 年 3 月 培養肉による持続可能な社会の創造 岡田 健成 2025 年 4 月~2026 年 3 月 鋳造の注湯作業における注湯技能評価を用いた作業者支援シス 布施 伶旺 2025 年 4 月~2026 年 3 月 テムの開発 ペットの思い出データを活用したデジタルペットサービスの創 Kim Hyeonkang 2025 年 4 月~2026 年 3 月 出	地熱発電所における井戸掘削の自動化	平田 泰之	2025年4月~2026年3月
空間再生のための IoT デバイス連携 フレームワークの構築 浅野 悠人 2025 年 4 月~2026 年 3 月 培養肉による持続可能な社会の創造 岡田 健成 2025 年 4 月~2026 年 3 月 鋳造の注湯作業における注湯技能評価を用いた作業者支援シス 布施 伶旺 2025 年 4 月~2026 年 3 月 アムの開発 ペットの思い出データを活用したデジタルペットサービスの創 Kim Hyeonkang 2025 年 4 月~2026 年 3 月 出	「もっとできる!」を引き出す ハンズフリー半自動車いす	太田有希乃	2025年4月~2026年3月
培養肉による持続可能な社会の創造 岡田 健成 2025 年 4 月~2026 年 3 月 接造の注湯作業における注湯技能評価を用いた作業者支援シス 布施 伶旺 2025 年 4 月~2026 年 3 月 アムの開発 ペットの思い出データを活用したデジタルペットサービスの創 Kim Hyeonkang 2025 年 4 月~2026 年 3 月 出 本日 大田 本日 本日 本日 本日 本日 本日 本日 本	9		
鋳造の注湯作業における注湯技能評価を用いた作業者支援シス テムの開発布施 伶旺2025 年 4 月~2026 年 3 月ペットの思い出データを活用したデジタルペットサービスの創出Kim Hyeonkang2025 年 4 月~2026 年 3 月AI による遺伝子発現の復元松田 泰斗2025 年 4 月~2026 年 3 月複合現実感(Mixed Reality)を用いた新しいリハビリテーション支援平塚心太朗2025 年 4 月~2026 年 3 月膜と促進酸化処理を用いたオンサイト型水再利用システムの実用化竹内 悠2025 年 4 月~2026 年 3 月世界で一番サーキュラーなモーター「motoloop」鳥越 誠也2025 年 4 月~2026 年 3 月メドプレ (MedPre) : 血液バイオマーカーと AI 解析を活用したアルツハイマー型認知症の超早期可視化と個別化介入サービスデジタルツインを活用した農業生産イノベーション出口 敦智2025 年 4 月~2026 年 3 月AI による次世代型海賊版の阻止虚 慧敏2025 年 4 月~2026 年 3 月マイクロデバイスを用いた宇宙開発のための高機能自動細胞培野田 笙太2025 年 4 月~2026 年 3 月	空間再生のための IoT デバイス連携 フレームワークの構築	浅野 悠人	2025年4月~2026年3月
テムの開発ペットの思い出データを活用したデジタルペットサービスの創出Kim Hyeonkang2025 年 4 月 ~ 2026 年 3 月AI による遺伝子発現の復元松田 泰斗2025 年 4 月 ~ 2026 年 3 月複合現実感(Mixed Reality)を用いた新しいリハビリテーション支援平塚心太朗2025 年 4 月 ~ 2026 年 3 月膜と促進酸化処理を用いたオンサイト型水再利用システムの実用化竹内 悠2025 年 4 月 ~ 2026 年 3 月世界で一番サーキュラーなモーター「motoloop」 鳥越 誠也2025 年 4 月 ~ 2026 年 3 月メドプレ (MedPre) : 血液バイオマーカーと AI 解析を活用したアルツハイマー型認知症の超早期可視化と個別化介入サービスデジタルツインを活用した農業生産イノベーション出口 敦智2025 年 4 月 ~ 2026 年 3 月AI による次世代型海賊版の阻止盧 慧敏2025 年 4 月 ~ 2026 年 3 月マイクロデバイスを用いた宇宙開発のための高機能自動細胞培野田 笙太2025 年 4 月 ~ 2026 年 3 月	培養肉による持続可能な社会の創造	岡田 健成	2025年4月~2026年3月
ペットの思い出データを活用したデジタルペットサービスの創出Kim Hyeonkang2025 年 4 月~2026 年 3 月AI による遺伝子発現の復元松田 泰斗2025 年 4 月~2026 年 3 月複合現実感(Mixed Reality)を用いた新しいリハビリテーション支援平塚心太朗2025 年 4 月~2026 年 3 月膜と促進酸化処理を用いたオンサイト型水再利用システムの実用化竹内 悠2025 年 4 月~2026 年 3 月世界で一番サーキュラーなモーター「motoloop」 鳥越 誠也2025 年 4 月~2026 年 3 月メドプレ (MedPre):血液バイオマーカーと AI 解析を活用したアルツハイマー型認知症の超早期可視化と個別化介入サービスデジタルツインを活用した農業生産イノベーション 松島 健一2025 年 4 月~2026 年 3 月AI による次世代型海賊版の阻止盧 慧敏2025 年 4 月~2026 年 3 月マイクロデバイスを用いた宇宙開発のための高機能自動細胞培野田 笙太2025 年 4 月~2026 年 3 月	鋳造の注湯作業における注湯技能評価を用いた作業者支援シス	布施 伶旺	2025年4月~2026年3月
出 AI による遺伝子発現の復元 松田 泰斗 2025 年 4 月~2026 年 3 月 複合現実感 (Mixed Reality)を用いた新しいリハビリテーション 支援 膜と促進酸化処理を用いたオンサイト型水再利用システムの実 用化 世界で一番サーキュラーなモーター「motoloop」 メドプレ (MedPre):血液バイオマーカーと AI 解析を活用した アルツハイマー型認知症の超早期可視化と個別化介入サービス デジタルツインを活用した農業生産イノベーション AI による次世代型海賊版の阻止 マイクロデバイスを用いた宇宙開発のための高機能自動細胞培 野田 笙太 2025 年 4 月~2026 年 3 月			
AI による遺伝子発現の復元松田 泰斗2025 年 4 月~2026 年 3 月複合現実感 (Mixed Reality)を用いた新しいリハビリテーション支援平塚心太朗2025 年 4 月~2026 年 3 月膜と促進酸化処理を用いたオンサイト型水再利用システムの実用化竹内 悠2025 年 4 月~2026 年 3 月世界で一番サーキュラーなモーター「motoloop」鳥越 誠也2025 年 4 月~2026 年 3 月メドプレ (MedPre) : 血液バイオマーカーと AI 解析を活用したアルツハイマー型認知症の超早期可視化と個別化介入サービスデジタルツインを活用した農業生産イノベーション出口 敦智2025 年 4 月~2026 年 3 月AI による次世代型海賊版の阻止盧 慧敏2025 年 4 月~2026 年 3 月マイクロデバイスを用いた宇宙開発のための高機能自動細胞培野田 笙太2025 年 4 月~2026 年 3 月	ペットの思い出データを活用したデジタルペットサービスの創	Kim Hyeonkang	2025年4月~2026年3月
複合現実感 (Mixed Reality) を用いた新しいリハビリテーション 平塚心太朗 2025 年 4 月~2026 年 3 月 支援 膜と促進酸化処理を用いたオンサイト型水再利用システムの実 竹内 悠 2025 年 4 月~2026 年 3 月 用化 世界で一番サーキュラーなモーター「motoloop」 鳥越 誠也 2025 年 4 月~2026 年 3 月 メドプレ (MedPre) : 血液バイオマーカーと AI 解析を活用した アルツハイマー型認知症の超早期可視化と個別化介入サービス デジタルツインを活用した農業生産イノベーション 松島 健一 2025 年 4 月~2026 年 3 月 AI による次世代型海賊版の阻止 盧 慧敏 2025 年 4 月~2026 年 3 月 マイクロデバイスを用いた宇宙開発のための高機能自動細胞培 野田 笙太 2025 年 4 月~2026 年 3 月	<u> </u>		
支援ヴ内 悠2025 年 4 月~2026 年 3 月用化世界で一番サーキュラーなモーター「motoloop」鳥越 誠也2025 年 4 月~2026 年 3 月メドプレ (MedPre) : 血液バイオマーカーと AI 解析を活用したアルツハイマー型認知症の超早期可視化と個別化介入サービスデジタルツインを活用した農業生産イノベーション出口 敦智2025 年 4 月~2026 年 3 月AI による次世代型海賊版の阻止虚 慧敏2025 年 4 月~2026 年 3 月マイクロデバイスを用いた宇宙開発のための高機能自動細胞培野田 笙太2025 年 4 月~2026 年 3 月		松田 泰斗	2025年4月~2026年3月
膜と促進酸化処理を用いたオンサイト型水再利用システムの実用化竹内 悠2025 年 4 月~2026 年 3 月世界で一番サーキュラーなモーター「motoloop」鳥越 誠也2025 年 4 月~2026 年 3 月メドプレ (MedPre) : 血液バイオマーカーと AI 解析を活用したアルツハイマー型認知症の超早期可視化と個別化介入サービスデジタルツインを活用した農業生産イノベーション出口 敦智2025 年 4 月~2026 年 3 月AI による次世代型海賊版の阻止虚 慧敏2025 年 4 月~2026 年 3 月マイクロデバイスを用いた宇宙開発のための高機能自動細胞培野田 笙太2025 年 4 月~2026 年 3 月	複合現実感(Mixed Reality)を用いた新しいリハビリテーション	平塚心太朗	2025年4月~2026年3月
用化世界で一番サーキュラーなモーター「motoloop」鳥越 誠也2025 年 4 月 ~ 2026 年 3 月メドプレ (MedPre) : 血液バイオマーカーと AI 解析を活用した アルツハイマー型認知症の超早期可視化と個別化介入サービス出口 敦智2025 年 4 月 ~ 2026 年 3 月デジタルツインを活用した農業生産イノベーション松島 健一2025 年 4 月 ~ 2026 年 3 月AI による次世代型海賊版の阻止盧 慧敏2025 年 4 月 ~ 2026 年 3 月マイクロデバイスを用いた宇宙開発のための高機能自動細胞培野田 笙太2025 年 4 月 ~ 2026 年 3 月	2 101		
世界で一番サーキュラーなモーター「motoloop」	膜と促進酸化処理を用いたオンサイト型水再利用システムの実	竹内 悠	2025年4月~2026年3月
メドプレ (MedPre) : 血液バイオマーカーと AI 解析を活用した アルツハイマー型認知症の超早期可視化と個別化介入サービス出口 敦智2025 年 4 月~2026 年 3 月デジタルツインを活用した農業生産イノベーション松島 健一2025 年 4 月~2026 年 3 月AI による次世代型海賊版の阻止盧 慧敏2025 年 4 月~2026 年 3 月マイクロデバイスを用いた宇宙開発のための高機能自動細胞培野田 笙太2025 年 4 月~2026 年 3 月	用化		
アルツハイマー型認知症の超早期可視化と個別化介入サービス デジタルツインを活用した農業生産イノベーション 松島 健一 2025 年 4 月~2026 年 3 月 AI による次世代型海賊版の阻止 虚 慧敏 2025 年 4 月~2026 年 3 月 マイクロデバイスを用いた宇宙開発のための高機能自動細胞培 野田 笙太 2025 年 4 月~2026 年 3 月			2025年4月~2026年3月
デジタルツインを活用した農業生産イノベーション松島 健一2025 年 4 月~2026 年 3 月AI による次世代型海賊版の阻止盧 慧敏2025 年 4 月~2026 年 3 月マイクロデバイスを用いた宇宙開発のための高機能自動細胞培野田 笙太2025 年 4 月~2026 年 3 月		出口 敦智	2025年4月~2026年3月
AI による次世代型海賊版の阻止盧 慧敏2025 年 4 月 ~ 2026 年 3 月マイクロデバイスを用いた宇宙開発のための高機能自動細胞培野田 笙太2025 年 4 月 ~ 2026 年 3 月			
マイクロデバイスを用いた宇宙開発のための高機能自動細胞培 野田 笙太 2025 年 4 月 ~ 2026 年 3 月	No. of the second secon	II.	
	AI による次世代型海賊版の阻止	盧 慧敏	2025年4月~2026年3月
養システム	マイクロデバイスを用いた宇宙開発のための高機能自動細胞培	野田 笙太	2025 年 4 月 ~ 2026 年 3 月
	養システム		

1 1 7 7 1 1 0 W X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2005 # 4 # 2000 # 2 #
Aerial Robotics for Human Localization in Areas After	Juan Augusto Heins	2025年4月~2026年3月
Disasters"	Herrera Ollachica	0005 # 4 # 0000 # 0 #
AI を用いて高齢者の会話と記憶を支援することによる認知症の	松山 峻大	2025年4月~2026年3月
予防法の確立	1 服土青山	0005 / 4 0000 / 0
利熱ガラス	小野寺亮太	2025年4月~2026年3月
VLM+拡散モデルを用いた採寸業務を自動化するロボットの開発	大澤 衡正	2025年4月~2026年3月
STABLE CABIN Project -SFC周辺における自律分散協調型の滞	高部 達也	2025年4月~2026年3月
在型市民農園群構築と新たな生活・開発モデルの構築-	I me les	
心不全治療を目的とした革新的交感神経抑制デバイスの開発	中野 優	2025年4月~2026年3月
マルチマテリアル・マイクロ3Dプリント技術の用途開発	丸尾 昭二	2025年4月~2026年3月
Selfrionette:環境・身体的制約を超越する自己身体拡張イン	平尾悠太朗	2025年4月~2026年3月
ターフェース		
様々な食品系産業廃棄物から バイオマスマテリアルを抽出し	中嶋 啓太	2025年4月~2026年3月
持続可能なバイオ製品に転換する 仲介プラットフォーム事業		
息を吐くだけで、代謝機能障害関連脂肪肝炎(MASH)を診断 -	勝俣 良紀	2025年4月~2026年3月
肝硬変・肝がんを未然に防ぐ医療機器の開発 -		
LiDAR センサと人工マーカーを用いた自己位置推定システムの	佐古 大空	2025年4月~2026年3月
開発		
認知予防の鍵~MCI 早期発見を可能にする CCT アプリの開発と	田丸 佳希	2025年4月~2026年3月
実用化~		
脳波複雑性を応用した脳波解析ツールの開発	齊藤 夕貴	2025年4月~2026年3月
カルシウムシグナルを活用した犬猫の免疫細胞の老化抑制	武田 惇宏	2025年4月~2026年3月
生体音の解析と医療への応用(AI 聴診支援装置の事業化)	土井 利次	2025年4月~2026年3月
リアル空間とメタバース空間を接続する遍在計測技術	吉田 貴寿	2025年4月~2026年3月
Ultima	片川 博雅	2025年4月~2026年3月
子どもの学習格差をゼロにする読書アプリケーションの創出	広田 雅和	2025年4月~2026年3月
高精度熱物性計測技術と熱制御製品開発による 革新的な熱マネ	笠松 貴之	2025年4月~2026年3月
ジメントの実現		
金属イオンを色に変えるフォトニック結晶ポリマーの事業開発	落合 章浩	2025年4月~2026年3月
農作物の廃棄を使用した天然 100%植物マテリアル 『 EUMIS	爪長 季美	2025年4月~2026年3月
skin (エウミス スキン)』の開発		
動物と人が接するあらゆる場面で生じる様々な社会課題の解決	黒岩 恒在	2025年4月~2026年3月
にむけた動物行動ビッグデータプラットフォームの開発		
画像認識 AI による睡眠時無呼吸症候群診断アプリ開発	小野 容岳	2025年4月~2026年3月
大型フレキシブル透明導電膜の事業化検証	永井 裕己	2025年4月~2026年3月
空港防衛 AI デバイス	山﨑 光	2025年4月~2026年3月
動画生成 AI を活用したインタラクティブな動画広告	北野 和紀	2025年4月~2026年3月
レアメタルの代替を目的とした多元素ナノ合金に関するビジネ	谷 慎一	2025年4月~2026年3月
スモデルの構築		
想像力を刺激する体験型醸造技術の開発	池田 和弘	2025年4月~2026年3月
光ファイバディスプレイ (FOD) の開発と社会実装	百武 優一	2025年4月~2026年3月
時短スキンケア市場を塗り替える	米澤 健人	2025年4月~2026年3月
	1	<u> </u>

2023 年度躍進コース

テーマ名	採択者名	事業期間
光オン・デマンド合成法による化学品合成と連続生	津田 明彦	2023年9月~2024年8月
産システム開発		
光学干渉を利用したリアルタイム非接触温度測定技 術の開発	東清一郎	2023年9月~2024年8月
過酷環境対応点検・モニタリングシステムの実証	吉村 武	2023年9月~2024年8月
超小型衛星用電気ロケット推進系ユニットの開発	青柳 潤一郎	2023年9月~2024年8月
極超低圧 CNF/PA 複合 RO 膜を用いた POU 浄水器の実 証検証	藤重 雅嗣	2023年9月~2024年8月
低侵襲骨粗鬆症治療デバイスに関する研究開発	前裕和	2023年9月~2024年8月
がん細胞の分離・濃縮・回収用磁性微粒子の開発	田中 賢	2023年10月~2024年8月
新規珪藻を用いたフコキサンチンの低コスト生産シ	広瀬 侑	2023年9月~2024年8月
ステムの開発		
化合物毒性予測ソフトウェアの実用化開発	株式会社ゼノバイオティック	2023年9月~2024年8月

遠隔補聴器診療支援システムの開発	株式会社オトキュア	2023年9月~2024年8月
経皮電気刺激による味覚調整デバイスとアプリケー ションの開発	株式会社 UBeing	2023年9月~2024年8月
毛髪の再生医療	株式会社 TrichoSeeds	2023年9月~2024年8月
新しいアプローチによる血管新生治療薬の開発	株式会社 Walkable Future	2023年9月~2024年8月
間質性肺炎(肺線維症)の進行を止める世界初の医薬 を臨床試験へ	株式会社抗体医学研究所	2023年9月~2024年8月
新規ペプチド合成用ビルディングブロック試薬 DKP の事業開発	株式会社ペップイノーバ	2023年9月~2024年8月
コンセプトベースで識別する AI を活用したインフラ 構造物点検	株式会社コクリエ	2023年9月~2024年8月
多様な航空機に対応可能な飛行訓練装置の開発	株式会社 UPWIND	2023年9月~2024年8月
磁性ナノ粒子を利用した微生物、タンパク質迅速検 出器の開発	Tohoku-TMIT 株式会社	2023年9月~2024年8月
巨大な負熱膨張を示すピロリン酸亜鉛マグネシウム の微粒子化	株式会社ミサリオ	2023年9月~2024年8月
ステント型電極を利用した中枢性睡眠時無呼吸の治療法の開発	株式会社 HICKY	2023年9月~2024年8月
抗体医薬品開発のための新規標的分子を探索・同定 する技術の開発	遠友ファーマ株式会社	2023年9月~2024年8月
バイオマス原料からのハイドロキノン生産法の開発	BioPhenolics 株式会社	2023年9月~2024年8月
航空機に影響を与える乱気流の予測モデルの開発	BlueWX株式会社	2023年9月~2024年8月
薬事申請に対応したカスタムメイド型骨用プレート システムの開発	Anylom 株式会社	2023年9月~2024年8月
思春期側弯症の早期発見に向けた検査システムの構 築・国際展開	株式会社 SMILE CURVE	2023年9月~2024年8月
次世代抗体医薬品の製造開発を簡易化する革新的新 規技術の事業化	Neko Pharma 株式会社	2023年9月~2024年8月
再突入カプセル技術を活用した小型保冷容器の高性 能化・高機能化	株式会社ツインカプセラ	2023年9月~2024年8月
美味しい魚の幹細胞バンクの構築:高品質未利用魚 の持続的利用	株式会社さかなドリーム	2023年9月~2024年3月

2024 年度躍進コース

テーマ名	採択者名	事業期間
無限寿命風車の開発	合同会社風力発電機研究所	2024年9月~2025年8月
アキシャルフィード式大気圧プラズマ溶射装置の開	トヨチ合同会社	2024年9月~2025年8月
発		
超小型センサヘッドによる多点非接触温度測定技術	0ICT 株式会社	2024年9月~2025年8月
の開発		
Dアミノ酸をバイオマーカーとする動物用腎機能検査	Dアミノ酸ラボ株式会社	2024年9月~2025年8月
技術の開発		
エクソソーム創薬に向けた高回収率・高純度精製技	株式会社 Egret・Lab	2024年9月~2025年8月
術の事業化		
分子設計支援ソフト「molfex™」の開発および販売	株式会社 MOLFEX	2024年9月~2025年8月
し尿から栄養素資源を回収するシステムの制御技術	株式会社 Nocnum	2024年9月~2025年8月
の開発		
C型肝炎の撲滅を目指した簡易診断キットの市場導入	SPHinX 株式会社	2024年9月~2025年8月
検討		
動物由来コラーゲン繊維の製品開発と新たな市場構	株式会社フルエリア	2024年9月~2025年8月
架	hh-b-A-hi rayy	
超高感度磁気センサによる生体磁気計測	株式会社 IZANA	2024年9月~2025年8月
建築配管位置情報の3次元透視が可能な自走式ス	SAKIYA 株式会社	2024年9月~2025年8月
キャナの開発		
ゲノム情報による各個人に最適な医薬投与設計支援	ゲノム・ファーマケア株式会	2024年9月~2025年8月
システムの開発	社	
量産型チップ上グラフェンの革新的赤外光源・分析	グラフェナリー株式会社	2024年10月~2025年8月
センシング事業		

新しいアプローチによる血管新生治療薬の開発	株式会社 Walkable Future	2024年9月~2025年8月
溶液のビッグデータを取得するダイヤモンド電子舌 センサの量産化	株式会社 ExtenD	2024年9月~2025年8月
植物の CO2 固定機能を向上させる資源循環型有機肥料の開発	株式会社WAKU	2024年9月~2025年8月
バイオガスを原料とする光オン・デマンド化学品生 産事業	光オンデマンドケミカル株式 会社	2024年9月~2025年8月
人工呼吸器患者を救う横隔神経刺激デバイスの開発	VentEase 株式会社	2024年9月~2025年8月
短時間・高品質な歯科 CR 修復インデックスの精度検証と効率化	株式会社 amidex	2024年9月~2025年8月
骨粗鬆症難治性椎体骨折に対する改良椎体形成用材 料の開発	株式会社スパインクロニクル ジャパン	2024年9月~2025年8月
宇宙天気 AI 予報技術の事業化促進に向けた研究開 発・実証	株式会社 Space Weather Company	2024年9月~2025年8月
リアルタイム微気象予測基盤の開発	ディーウェザー株式会社	2024年9月~2025年8月
革新的プロトン伝導膜を利用したアンモニア電解合 成デバイス事業	株式会社 QioN	2024年9月~2025年8月
MOF を用いた分子構造決定技術によるパラダイムシフト	テクモフ株式会社	2024年9月~2025年8月

<実施項目2> MPM

2023 年度

採択先	実施期間
東京大学協創プラットフォーム開発株式会社	2023年7月~2025年3月
東北大学ベンチャーパートナーズ株式会社	2023年7月~2025年3月
株式会社先端技術共創機構	2023年7月~2025年3月
株式会社ケイエスピー	2023年7月~2025年3月
株式会社みらい創造機構	2023年7月~2025年3月
リアルテックホールディングス株式会社	2023年7月~2025年3月
大阪大学ベンチャーキャピタル株式会社	2023年7月~2025年3月
京都大学イノベーションキャピタル株式会社	2023年7月~2025年3月

2024 年度

採択先	実施期間
upto4株式会社	2024年6月~2026年3月
株式会社FFGベンチャービジネスパートナーズ	2024年6月~2026年3月
株式会社エル・ティー・エス	2024年6月~2026年3月
Beyond Next Ventures株式会社	2024年6月~2026年3月
株式会社北海道共創パートナーズ	2024年6月~2026年3月
株式会社マイナビ	2024年6月~2026年3月
株式会社みらいワークス	2024年6月~2026年3月
株式会社リバネス	2024年6月~2026年3月