

13th CDTI - NEDO Joint Workshop
“AI-Equipped Collaborative Robot Technology”
December 11, 2025 Tokyo

Case study in agriculture: dual-arm collaborative mobile manipulator for autonomous AI-based harvesting

Ángel Soriano PhD
R&D Director

 Robotnik

MORE THAN 20 YEARS AS

LEADERS IN MOBILE ROBOTICS

We **design, manufacture and market** autonomous mobile robots and manipulators, capable of working autonomously in collaborative environments, sharing space with humans.

+4 800 Customers are using our **robots**

Business verticals

Products
Autonomous Mobile
Robots & Manipulators

Services
Mobile Robotic Projects

Product portfolio

PRODUCT OVERVIEW

ROBOTNIK'S SOFTWARE STACK

Modular software architecture with an extensive set of 500+ packages that can be customized to provide turnkey and full-stack solutions covering a wide range of applications ROS/ROS2-based.

EASY CONFIGURATION

COLLABORATIVE

AUTONOMY

ADVANCED USER INTERFACE (HMI)

FLEET MANAGEMENT SYSTEM (FMS)

AMR

AUTONOMOUS MOBILE ROBOTS

Portfolio of mobile bases for multi-industry indoor and outdoor applications with modular configuration to be integrated with any components.

[View our video](#)

MMR

MOBILE MANIPULATOR ROBOTS

Mobile Manipulator robots designed for plug & play with robotic arms or any other components working autonomously or collaboratively.

[View our video](#)

GOBIERNO
DE ESPAÑA

MINISTERIO
DE CIENCIA, INNOVACIÓN
Y UNIVERSIDADES

Mobile platforms portfolio

AMRs

RB-WATCHER

RB-THERON

RB-ROBOUT

MMRs

RB-KAIROS+

RB-ROBOUT+

RB-VOGUI+

XL-GEN

▶ Video

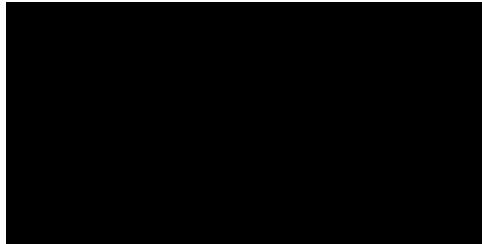
▶ Video

▶ Video

▶ Video

▶ Video

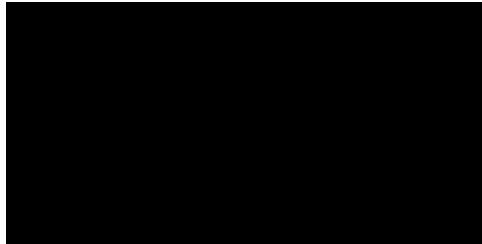
APPs



Case study in agriculture: dual-arm collaborative mobile manipulator for AI-based harvesting

Disadvantages of Current Harvesters:

- Dependence on a driver and use of gasoline.
- Loss of grapes and potential negative impact on their quality.
- Health risks associated with manual operation/traditional machinery.



Case study in agriculture: dual-arm collaborative mobile manipulator for AI-based harvesting

Disadvantages of Current Harvesters:

- Dependence on a driver and use of gasoline.
- Loss of grapes and potential negative impact on their quality.
- Health risks associated with manual operation/traditional machinery.

OUR SOLUTION: AUTONOMOUS AI BASED HARVESTING

Challenge 1: Strict requirements for Robotic Navigation in Vineyards

- High traction and long-range autonomy.
- Strict width limitation (1.5m) for movement between rows.
- Ability to navigate on significant slopes (15-25° incline).
- Obstacle detection and omnidirectional movement.

Challenge 2: Biomimicry Requirements in the Harvest

The harvesting process is divided into two phases:
bunch picking and stem cutting.

Case study in agriculture: dual-arm collaborative mobile manipulator for AI-based harvesting

Challenge 1: Strict requirements for Robotic Navigation in Vineyards

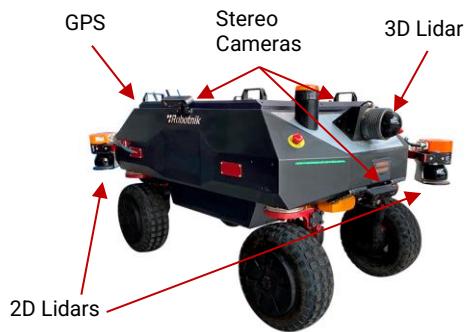
Hardware solution:

RB-VOGUI XL

Weight: 250 kg

Speed: 1 m/s

Autonomy: 6-8h


Traction Motors: 4 x 750W

Steering Motors: 4 x 200W

Temperature Range: -10°C to +45°C

Load Capacity: Up to 200 kg

Maximum Incline: 47%

Case study in agriculture: dual-arm collaborative mobile manipulator for AI-based harvesting

Challenge 1: Strict requirements for Robotic Navigation in Vineyards

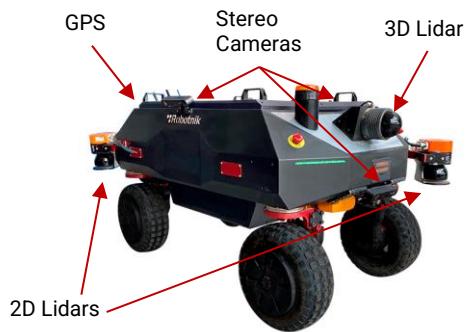
Hardware solution:

RB-VOGUI XL

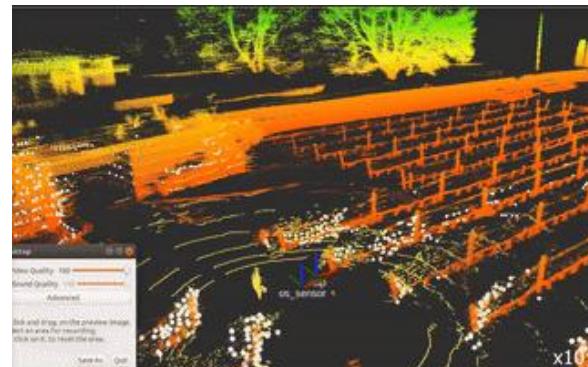
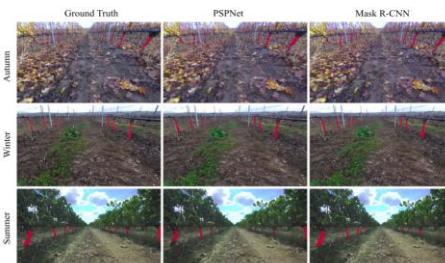
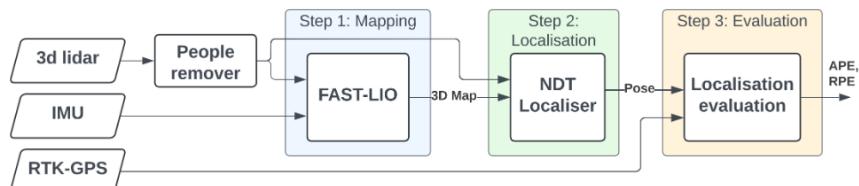
Weight: 250 kg

Speed: 1 m/s

Autonomy: 6-8h


Traction Motors: 4 x 750W

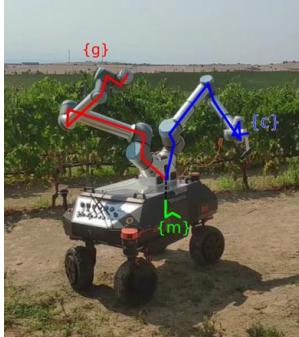
Steering Motors: 4 x 200W




Temperature Range: -10°C to +45°C

Load Capacity: Up to 200 kg

Maximum Incline: 47%

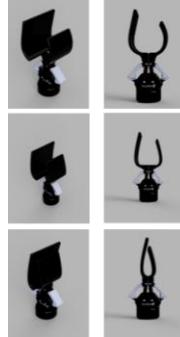
Software solution:

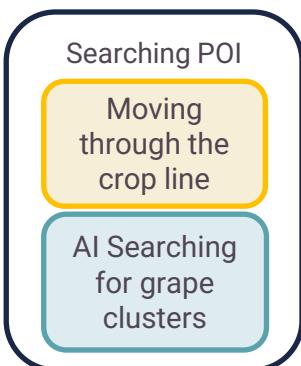


Case study in agriculture: dual-arm collaborative mobile manipulator for AI-based harvesting

Challenge 2: Biomimicry Requirements in the Harvest

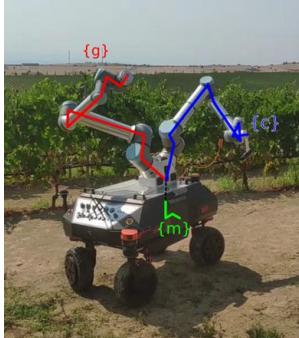
Hardware solution:


BI-COL. ARM


AUT. SCISSORS

GRASPING TOOL

Software solution:

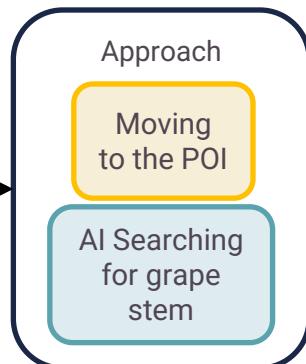
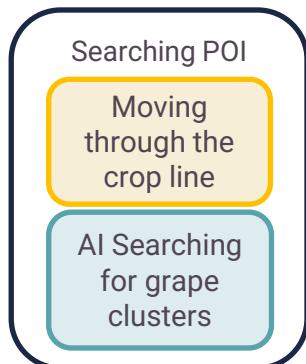


Case study in agriculture: dual-arm collaborative mobile manipulator for AI-based harvesting

Challenge 2: Biomimicry Requirements in the Harvest

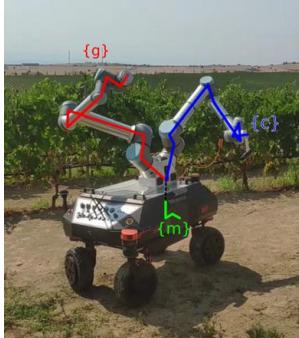
Hardware solution:

BI-COL. ARM



AUT. SCISSORS

GRASPING TOOL

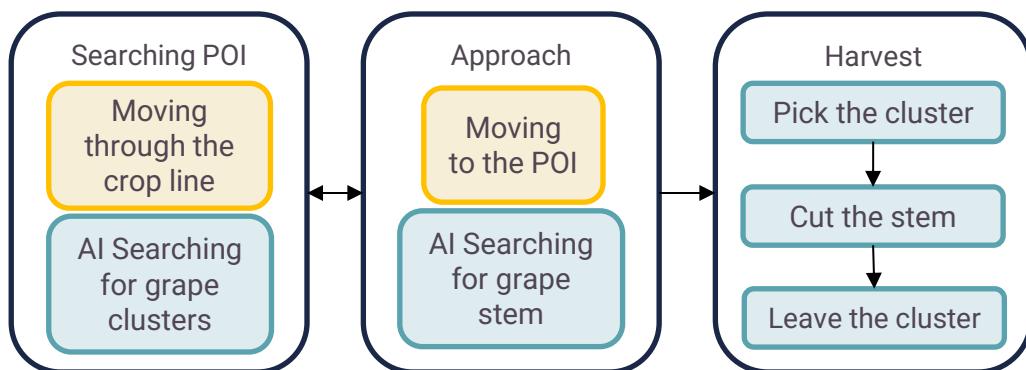
Software solution:


Case study in agriculture: dual-arm collaborative mobile manipulator for AI-based harvesting

Challenge 2: Biomimicry Requirements in the Harvest

Hardware solution:

BI-COL. ARM


AUT. SCISSORS

GRASPING TOOL

Software solution:

Ideas for a Japan – Robotnik collaboration

1. Market & Channel Partners (Distribution)

- Resell Robotnik AMRs and mobile manipulators in Japan.
- Position and promote “Japan-ready” product configurations.
- Provide local demos, first-line support and spare parts.

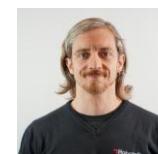
2. Solution & Integration Partners

- Use Robotnik platforms as the base for turnkey applications (manufacturing, logistics, inspection...).
- Integrate with customer systems (WMS/MES/PLC, safety, IT/OT).
- Deliver services and long-term projects to Japanese end-users.

3. Innovation & Ecosystem Partners

- Co-develop new applications and pilot projects in Japanese sites.
- Localize and certify Robotnik platforms for the Japanese market (language, standards, safety).
- Build ROS 2 & mobile robotics hubs (training, research, community) around Robotnik platforms.

13th CDTI - NEDO Joint Workshop
“AI-Equipped Collaborative Robot Technology”
December 11, 2025 Tokyo


Study case in agriculture: double
collaborative arm manipulator for AI-
based harvesting

Ángel Soriano PhD
R&D Director
Robotnik

Thank you
ありがとうございます

 Robotnik

www.robotnik.eu

asoriano@robotnik.es

