### NEDO水素・燃料電池成果報告会2023

発表No. B1-5

超高圧水素インフラ本格普及技術研究開発事業/ 国際展開、国際標準化等に関する研究開発/ 水素ステーション等機器の ISO/TC197 国際標準化の推進と水素 品質規格のための研究開発

富岡秀徳 (HySUT)

一般社団法人水素供給利用技術協会(HySUT) (再委託) 一般財団法人 石油エネルギー技術センター

国立大学法人東京大学

一般財団法人日本自動車研究所(JARI)

2023年7月13日

#### 連絡先

一般社団法人水素供給利用技術協会 E-mail: hi-tomioka@hysut.or.jp

TEL: 03-3560-2807

一般財団法人日本自動車研究所 E-mail: tshimizu@jari.or.jp

TEL: 029-856-0818

### 事業概要

1. 期間 開始 : 2018年6月

終了 : 2023年3月

#### 2. 最終目標

① 水素ステーション等機器のISO/TC197国際標準化の推進:現在策定審議中のISO国際規格、並びに、今後新規提案されるISO国際規格や既制定規格の改訂に関し、日本の技術・知見を活かして制定を主導的に取り進める。

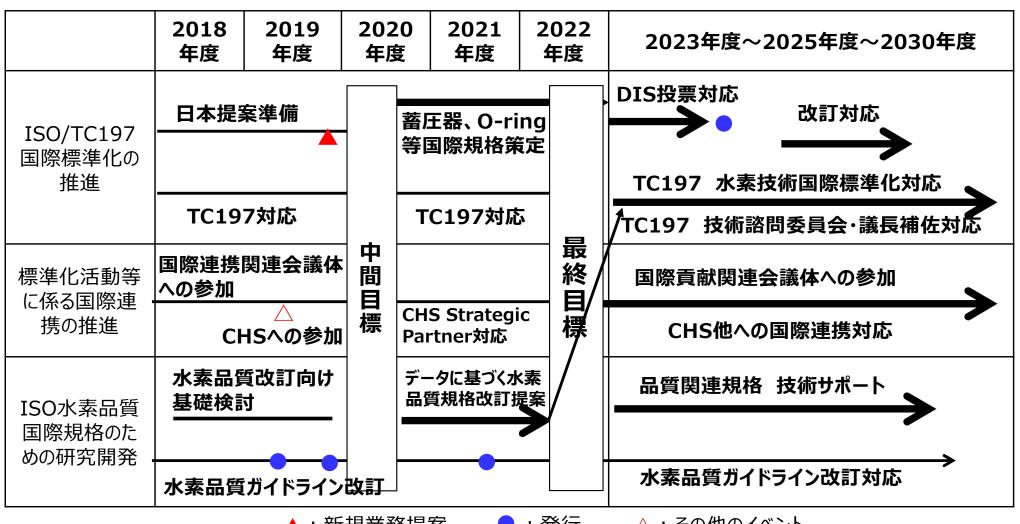
- ② 標準化活動等に係る国際連携の推進:グローバルな動向の把握のため、IEA-Annex会議やNOW、DOE等との国際インフラワークショップ会議、CHS等に参加し、国際連携を進める。
- ③ ISO水素品質国際規格のための研究開発: ISO14687で規定されている不純物の許容濃度の妥当性を改めて検討し、 許容濃度の適正化を行い、次期改訂に資する。併せて、ハロゲン、硫黄、微粒子等の適切な品質管理方法を机上検討 し、水素品質ガイドライン案の改訂を順次行う。

#### 3.成果·進捗概要

- ① 水素ステーション用機器等水素関連技術に関する国際標準化を進め、グローバル動向を踏まえつつ、日本の技術・知見を活かして制定を主導的に取り進めた。ISO/TC197及びその傘下のWG等の国際会議への有識者の派遣、関係団体との連携等を行うとともに国内委員会活動を充実させ日本が主導的な立場で水素関連技術の国際標準化を推進できるよう活動した。
- ② 標準化活動等に係る国際連携の推進:IEA HTCP会議やNOW、DOE等との国際インフラワークショップ会議等に参加、CHSへの Strategic Partner としての参加等、海外関係者との意見交換、論議を実施した。
- ③ ISO水素品質国際規格のための研究開発:インフラ事業者の要望をもとに、規格改訂可否判断のための試験データが必要なギ酸、ハロゲン化物、酸素に関するデータを取得し、改訂議論に活用した。また、水素品質管理国際規格(ISO 19880-8)の補遺による修正に整合することを目的として水素品質ガイドライン改訂案を策定した。

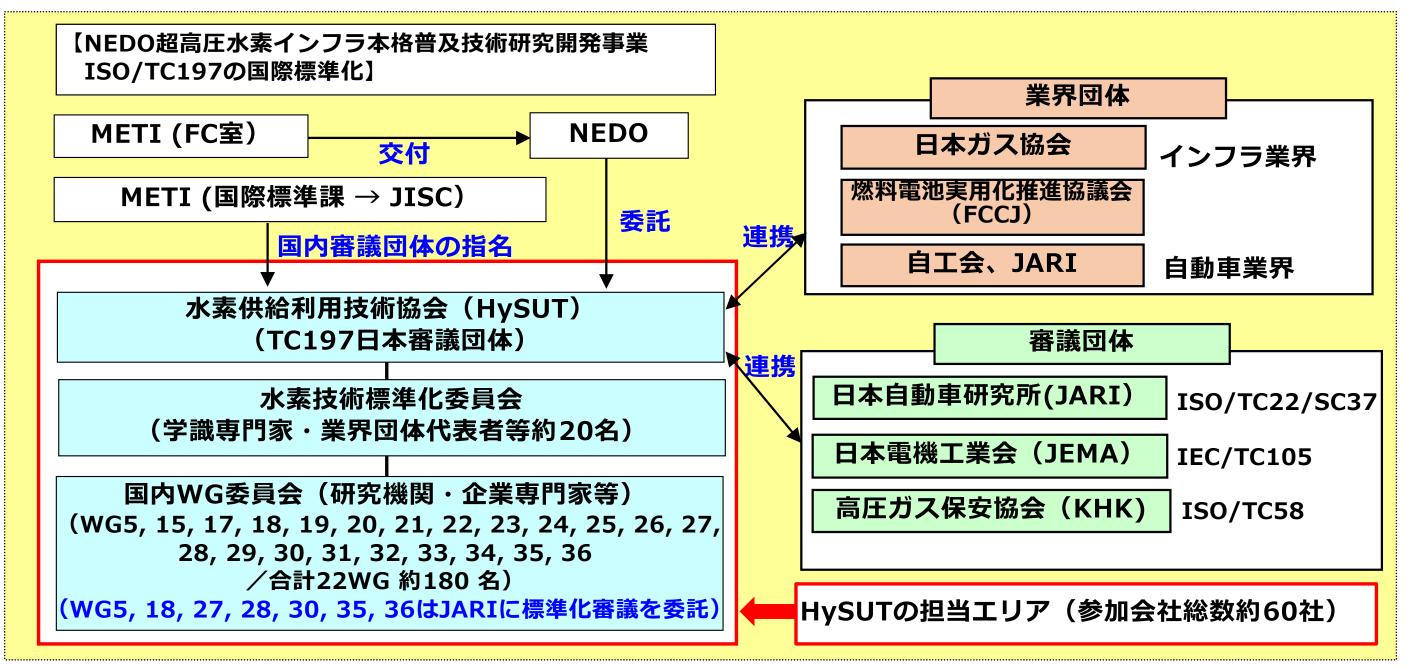
### 1. 事業の位置付け・必要性

#### ◆ 本事業の位置づけ、意義、必要性


- ✓ 日本は過去10年余り、水素ステーション等機器のISO国際標準化において先導的役割を果たしてきた。
- ✓ 近年、米国、欧州や、中国などでの水素に関する国際的動向が注目される中、国際標準化の取り組みの重要性が更に増してきている。
- ✓ 日本が引き続き水素の取組みにおいて世界をリードして日本の産業振興・競争力強化を図るため、 国際的な枠組みを活用しつつ、水素技術に関するISO/TC197における国際標準化への取り組 みの重要性が増している。
- ✓ そのためには、グローバルな動向を常に把握し、国内外の関係機関との連携を図ること、また、そのためには国内の関連する技術開発との連携を図ることが重要である。

#### ◆ 本事業の目的

このため、従来日本が世界の先導的役割を果たしてきたISO/TC197(水素技術)が対象とする水素ステーション機器等に関する国際規格策定につき、引き続き世界をリードするための取組を実施し、もって、日本の産業振興・競争力強化を図ること、更に、ISO国際審議を日本が主導するため、水素品質に関する研究開発を行うことを本事業の目的とする。


### 2. 研究開発マネジメントについて:研究開発のスケジュール

◆ 国際連携・国際標準化に向けた具体的取組



▲:新規業務提案
・発行
△:その他のイベント

## 2. 研究開発マネジメントについて: ISO/TC197国内活動体制(その1)



## 2. 研究開発マネジメントについて: ISO/TC197国内活動体制(その2)

| WG番号           | 規格名                                 | ISO番号         | 議長(コンビナー)  | 標準化対応       |
|----------------|-------------------------------------|---------------|------------|-------------|
| WG1            | 車載用液水タンク                            | 13985         | ドイツ        | JARI(別事業)   |
| WG5            | 水素充填コネクタ:120g/s以下・120g/s以上          | 17268-1, -2   | カナダ        | JARI        |
| WG15           | 定置式用蓄圧器                             | 19884         | 米国+日本      | HySUT       |
| WG17           | 水素精製装置(PSA)                         | TS19883       | 中国         | HySUT       |
| WG18           | 車載用高圧水素タンク・TPRD (熱作動式圧力逃し装置)        | 19881 · 19882 | カナダ        | JARI (別事業)  |
| WG19           | 水素ステーション用 ディスペンサー (充填機)             | 19880-2       | 日本         | HySUT       |
| WG20           | 水素ステーション用 バルブ類                      | 19880-3       | 日本         | HySUT       |
| WG21           | 水素ステーション用 コンプレッサー                   | 19880-4       | 米国         | HySUT       |
| WG22           | 水素ステーション用 ホース                       | 19880-5       | 米国         | HySUT       |
| WG23           | 水素ステーション用 フィッティング (継手)              | 19880-6       | 米国         | HySUT       |
| WG24 <u>-1</u> | 水素ステーション                            | 19880-1       | 米国+フランス    | HySUT       |
| WG24-2         | 水素充填プロトコル                           | <u>19885</u>  | <u>米国</u>  | <u>JARI</u> |
| WG25           | 水素吸蔵合金(MH)容器                        | 16111         | フランス       | HySUT       |
| WG26           | 水電解装置                               | 22734         | 米国         | HySUT       |
| WG27           | 水素燃料仕様(ISO 14687:2019の改定)           | 14687         | 日本         | JARI        |
| WG28           | 水素品質管理                              | 19880-8       | 日本         | JARI        |
| WG29           | 水素システムの安全に関する基礎検討項目                 | TR 15916      | 米国         | HySUT       |
| JWG30          | 車載燃料システム用部品                         | 19887         | 米国         | JARI(別事業)   |
| WG31           | 水素ステーション用 Oリング                      | 19880-7       | 日本         | HySUT       |
| WG32           | 水電解装置-電力網に対する性能試験法                  | TR22734-2     | ドイツ        | HySUT       |
| WG33           | 水素燃料サンプリング方法                        | 19880-9       | ノルウェー + 英国 | HySUT       |
| WG34           | 水電解装置(ISO 22734:2019の改訂)            | 22734-1       | 英国         | HySUT       |
| WG35           | 液水充填プロトコル                           | 13984         | ドイツ        | JARI        |
| WG36           | 水素充填コネクタ (Cryo-compressed Hydrogen) | 17268-3       | ドイツ        | JARI        |

<sup>\*</sup>国内委員会未設置 事務局がエキスパート登録して対応中

2. 研究開発マネジメントについて: ISO/TC197国内活動体制(その3)

### JARI実施体制 (水素品質関連)

ISO/TC197

(一社)水素供給利用技術協会(HySUT)

ISO/TC197国内審議団体としての窓口。 JARI委員会の審議結果に基づき投票な どを実施する。 SAE FCSC, Interface TF

燃料標準化WG

本事業

<標準化>

ISO/TC197/WG27, WG28 水素品質関連規格国内対応

JARIにて、燃料品質及び水素品質管理 に係る実質的な標準化審議を実施 2. 研究開発マネジメントについて: ISO/TC197国内活動体制(その4)

### JARI実施体制 (充填インターフェース関連)

ISO/TC197

(一社)水素供給利用技術協会(HySUT)

ISO/TC197国内審議団体としての窓口。 JARI委員会の審議結果に基づき投票な どを実施する。 SAE FCSC, Interface TF

水素充填インターフェース標準化WG

本事業

ISO/TC197/WG5 国内対応委員会

ISO/TC197/WG24-2(水素充填プロトコル) 国内対応委員会

### 3. 研究開発成果について:目標及び進捗状況、目標達成に向けたアプローチ

### ◆成果の最終目標の達成状況

| 研究開発項目                                               |                                                             | 最終目標(2022年度末)                                                                      | 達成<br>有無 | 達成状況                                                                                                                                                                         |
|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) 水素ステー<br>ション等機器の<br>ISO / TC 197<br>国際標準化の推<br>進 | 1-1 ISO等国際標準の制定の<br>主導的取り進めと、ISO<br>等国際標準と国内研究<br>開発等との連携強化 | 策定審議中のISO国際規格、並びに、今後新規提案されるISO国際規格や既制定規格の改訂に関レグローバル動向を踏まえつつ、日本案を策定して、制定を主導的に取り進める。 |          | 2018年度から2022年度までのISO/TC197における国際標準化の実績としては、12件の規格を発行した。内4件は日本が議長国(提案国)として発行した国際規格である。また、当該期間中25件の規格を審議改訂しており、そのうち7件は日本が議長国、提案国として開発した規格である。                                  |
|                                                      | 1-2 燃料電池自動車関連の<br>ISO国際規格の制定推<br>進                          | 水素品質、インターフェース関連国際規格<br>改訂に関し日本案を策定して、制定を主<br>導的に取り進める。                             | 0        | 水素品質関連2規格(議長国日本)および充填インターフェース関連2<br>規格を発行した。うち、水素品質規格は日本のデータを根拠に成分を削<br>減し、コネクタは日本が提案した氷結試験方法を内容に反映させた。車<br>両に係る規格は、大量普及期に向けた大型車を対象とした改訂議論が<br>開始されており、予定通り2022年度までの目標を達成した。 |
| (2) 標準化活動等に係る国際連携の推進                                 |                                                             | CHS等国際連携活動の継続                                                                      |          | CHSへのStrategic Partnerとしての参加。その他海外の関連事業者との意見交換、論議に積極的に参加し、水素技術の分野の国際標準化に対するプレゼンスを高め、2021年より日本がISO/TC197議長国となったことにつながった。                                                      |
| (3) ISO水素<br>品質国際規格の<br>ための研究開発                      | 3-1 水素品質管理方法の適<br>正化のための不純物影響<br>調査                         | ISO14687で規定されている不純物の許容濃度の妥当性を改めて検討し、許容濃度の適正化を行い、次期改訂に資する。                          |          | インフラ事業者の緩和要望をもとに、規格改訂のための根拠が必要な成分を絞り込み、ギ酸削除、ハロゲン絞込み、酸素緩和(2022年度は短期影響)に関するデータを取得した。このうちギ酸は規格表からの削除が可能であることを示し、ISO/CD 14687案に反映させた。                                            |
|                                                      | 3-2 水素品質の管理方法適<br>正化による運営費コストダ<br>ウンの開発                     | 水素品質管理の国際規格改訂に合わせ<br>たガイドライン改訂等の取組み                                                | 0        | もとの水素品質関連のISO国際規格の改訂に合わせて、2度に亘る水素<br>品質ガイドライン改訂案の策定を実施した。また、Sの簡易分析について<br>検知管等の精度を確認し、品質管理の低コスト化の可能性を示した。                                                                    |

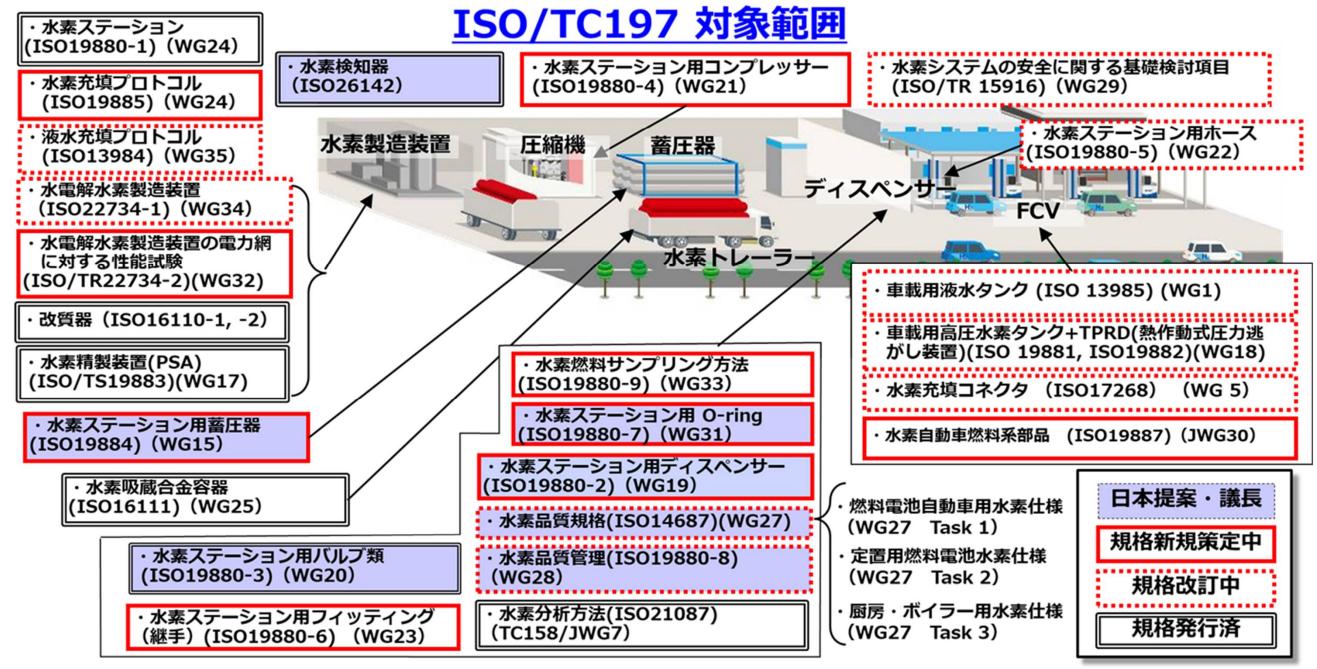
### ◆ 成果の意義

ISO/TC197(水素技術)関連の国際標準化活動、国際連携及び関連する研究開発を積極的に実施することにより、日本の水素・FCV関連の市場での国際競争力強化を図る上で意義が大きい。

### 3. 研究開発成果について: 各個別テーマの成果と意義 ①

- 1 水素ステーション等機器のISO/TC197国際標準化の推進
- 1-1 ISO等国際規格の主導的な制定の取組みと、ISO等国際標準と国内研究開発等との連携強化

#### ○ 達成状況


水素ステーション用機器等水素関連技術に関する国際標準化を進め、グローバル動向を踏まえつつ、日本の技術・知見を活かして制定を主導的に取り進めた。ISO/TC197及びその傘下のWG等の国際会議への有識者の派遣、関係団体との連携等を行うとともに国内委員会活動を充実させ日本が主導的な立場で水素関連技術の国際標準化を推進できるよう活動した。

- 実施期間である2018年度~2022年度の期間中に12件の規格を発行した。内4件は日本が議長国(提案国)として発行したものである。
- 期間中25件の規格を審議・改訂しており、そのうち7件は日本が議長国、提案国として開発した規格である。

#### ○ 成果の意義

ISO/TC197(水素技術)関連の国際標準化活動を積極的に実施する中で、特に日本を議長国とする新規項目も含めて国際規格の策定が的確に進んでいる。今後の当該分野の日本の立場を優位にする上で意義が大きい。

### 3. 研究開発成果について:



## 3. 研究開発成果について: 各個別テーマの成果と意義 ②

- 1 水素ステーション等機器のISO/TC197国際標準化の推進
- 1-2 燃料電池自動車関連のISO国際規格の制定推進

#### ○ 達成状況

水素品質、充填インターフェース関連国際規格の発行と改訂の対応。

- 日本が議長国である水素品質規格ISO 14687(WG 27)および水素品質管理ISO 19880-8 (WG 28)は、2021年から改訂審議が開始。両ISOとも更なる水素ステーションの管理コスト低減を目指し、規格緩和に向けた議論を海外機関と共に進めている。(2024年改訂版発行予定)
- 水素充填コネクタ ISO 17268 (WG5) は2020年2月に発行後、HDVを考慮した改定議論が開始されており、日本からHDV用に内径4 mmのコネクタ形状を提案し議論を加速している。水素充填プロトコルは ISO 19885 (WG 24) として、充填プロトコル概念、通信制御、HDV用充填プロトコルの3つの規格開発を開始。日本としてはMF充填(流量180g/s(90g/s × 2))に焦点を置いて検討を進めている。
- 液水充填プロトコル ISO 13984(WG36)は、1999年発行第1版をベースに技術の進捗に合わせた改定を 始めた。CcH2充填コネクタは、ISO17268-3(WG35) として、市場での問題なく運用できるよう、レセプタク ル、保護キャップ(車載用)、ノズル、通信ハードウェアを規定する議論を開始している。

### ○ 成果の意義

ISO/TC197(水素技術)関連の国際標準化活動を積極的に実施する中で、日本の意見を十分に反映して発行・改訂を推進することは、今後の当該分野の日本の立場を優位にする上で意義が大きい。  $12/1^{\circ}$ 

## 3. 研究開発成果について: 各個別テーマの成果と意義 ③

2 標準化活動等に係る国際連携の推進

#### ○ 達成状況

- ISO/TC197関連国際標準化の円滑な活動に資するため、安全に関する国際連携を目途として、2019年度より HySUTはCHS(Center for Hydrogen Safety)にメンバーとして参加し、2019年10月に CHSとして開催する初の国際会議(サクラメント)において日本の状況を報告した。また、2020年7月より、Strategic Partner としてメンバー資格を上げ、より影響力を行使できる体制を築き、引き続きCHSの活動に貢献した。
- グローバルな関連技術動向の把握のため、IEA HTCP会議、NOW、DOE等との国際インフラワークショップ会議等に参加して、海外事業者との意見交換、論議を行い、国際連携の推進に積極的に取り組んだ。

#### ○ 成果の意義

上記のように国際連携に必要な活動を積極的に実施する中で、日本の水素技術の分野の国際標準化に対するプレゼンスを高め、今後の国際協調に必要なプラットフォームへの参画を容易とする基盤を醸成した。

これらの活動の成果の一つとして、2021年より日本がISO/TC197議長国となったことにつながった。

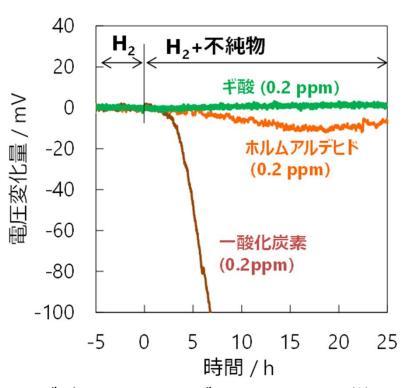
- 3. 研究開発成果について: 各個別テーマの成果と意義 ④-1
  - 3 ISO水素品質国際規格のための研究開発
  - 3-1 水素品質管理方法の適正化のための不純物影響調査

#### ○ 達成状況

2020年度までにインフラ事業者の緩和要望をもとに、規格改訂のための試験データが必要な成分について取り纏めた。2021年度はこれらの成分に対するデータ取得も含めた具体的検討を開始した。2022年からは酸素緩和に関する短期的な影響の影響評価も実施した。

#### ○ 成果の意義

水素供給事業者の要望を踏まえて自動車メーカーの了解を取りつつ次期水素品質規格の改訂提案を行い、水素品質管理の負担を低減させることで、分析コストの低減と、水素品質管理に係る新規参入者の増加が期待でき、水素およびFCVの普及拡大に貢献できる。


| 改訂候補成分                                | 分析コスト低減への寄与方法                         | 必要な検討項目                          | 検討状況                                                                                               |  |  |
|---------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| ギ酸の水素品<br>質規格からの<br>削除                | 規格から削除して分析項目を減らし、<br>コスト低減(効果大)       | 規格から削除する<br>場合の根拠データが<br>必要      | 2021年度にデータを取得、高濃度でも影響が小さいことをデータで示した。ギ酸規格値は炭化水素の項に含める方向で検討。                                         |  |  |
| <mark>ハロゲン化物</mark><br>の絞込み(Cl<br>のみ) | ハロゲン化物の分析成分数を削減<br>(4→1種)することによるコスト低減 | CI以外のBr, Iを規格から除外する根拠となるデータが必要   | 日米欧の研究機関からなる専門家会議で、欧州でのハロゲンの燃料電池触媒への影響評価結果を共有した。日本では2022年に燃料電池性能への影響評価を実施し、ハロゲン化物の絞り込みに向けた検討に活用した。 |  |  |
| 酸素<br>許容濃度<br>の緩和                     | 5→50ppmとすることによる品質管理負担低減               | 緩和することによる性<br>能・耐久性に関する<br>知見が必要 | 2022年度に短期的な影響と、水素循環系における濃縮挙動の<br>基礎データを取得した。今後長期影響に関する燃料電池劣化へ<br>の影響に関する知見が必要。                     |  |  |

## 3. 研究開発成果について: 各個別テーマの成果と意義 ④ - 2

20

### 3 ISO水素品質国際規格のための研究開発

### 3-1 水素品質管理方法の適正化のための不純物影響調査



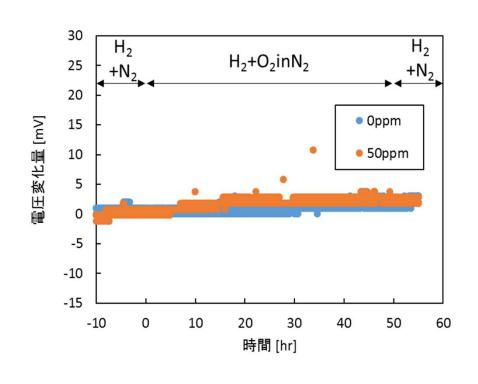



図 ギ酸、ホルムアルデヒド、COによる燃料電 池電圧への影響 (60℃、1.0 A cm<sup>-2</sup>)

図 種々のハロゲン化物による燃料電池 電圧への影響 (60℃、1.0 A cm<sup>-2</sup>)

濃度2ppm、10時間添加

図 酸素による燃料電池電圧への影響 (60℃、1.0 A cm<sup>-2</sup>)

- ▶ ギ酸に関するデータを取得し、現状の規格値で十分に燃料電池への影響が小さいことを示した(規格表から削除、炭化水素に含める)。
- ➤ ハロゲン化物(許容濃度0.05 ppm)は低加湿条件で電圧が低下(種類によらず不可逆的)。
- ▶ 酸素は50 ppmでも短期的には電圧低下は見られない。(今後長期での材料劣化への影響を調査) 15/17

# 3. 研究開発成果について: 成果の普及

|            | 2018<br>年度 | 2019<br>年度 | 2020<br>年度 | 2021<br>年度 | 2022<br>年度 | 計  |
|------------|------------|------------|------------|------------|------------|----|
| 論文         | 0          | 1<br>(査読有) | 0          | 0          | 2          | 3  |
| 研究発表·講演    | 0          | 1          | 1          | 4          | 5          | 11 |
| 受賞実績       | 0          | 1          | 0          | 0          | 0          | 1  |
| 新聞・雑誌等への掲載 | 0          | 1          | 0          | 0          | 0          | 1  |
| 展示会への出展    | 0          | 0          | 0          | 0          | 0          | 0  |

※2023年3月31日現在

- 4. 今後の見通しについて: 成果の実用化に向けての取組及び見通し
  - ◆ ISO/TC197 国際標準化活動推進による波及効果

#### 日本にとってのメリット:

- 今後も中心的な位置での活動を継続することにより、水素技術に係る国際標準化におけるプレゼンスがますます高まる。
  - これまでも日本の高い水素関連技術から、各国際標準化案件への積極的な参画により、当該TCでの日本の一定のプレゼンスはあったが、世界の水素関連技術への取り組みが活発化する中で、日本の活動を一層推進することにより、影響力、発言力は、さらに高まる。
  - TCの決定事項に対して、不利を避けられる。
- 今後の大型車(Heavy Duty Vehicle; HDV)の展開など、先端技術に関する情報をいち早く収集できる。 また、NEDO他事業との連携により高度な貢献を可能と出来る。

#### その他の波及効果:

- 日本の水素・FCV関連の国際競争力の強化
- 日本の持つ高い技術力に対して、国際標準化の側面からそれを裏打ちすることから、国際市場における日本の国際競争力を維持・発展することが出来る。
- 人材育成
  - 日本からの議長、エキスパートおよび事務局の国際標準化審議に参加することで、国際標準化対応に優れた人材の育成につながる。

17/17