成果報告書詳細
管理番号20090000000608
タイトル*平成20年度中間年報 固体高分子形燃料電池実用化戦略的技術開発 次世代技術開発 固体高分子形燃料電池単セルの速度論的モデリングとセル内現象の解明
公開日2010/3/2
報告書年度2008 - 2008
委託先名国立大学法人京都大学
プロジェクト番号P05011
部署名燃料電池・水素技術開発部 燃料電池グループ
和文要約以下本編抜粋:1.研究開発の内容及び成果等 固体高分子形燃料電池(PEFC)内の水の挙動は複雑で、特にMEA厚さ方向の水の輸送は実測が困難であり、理論的にも明らかにされていない。PEFCではMEAにおいて発電量に匹敵する大きな発熱があり、厚さ方向に温度分布が存在する。これが水の状態に大きく影響する。本研究では、反応、伝熱、物質移動を統合した反応工学的モデルを開発し、非等温条件下での解析とシミュレーションを行うことより、厚さ方向のセル内温度分布、電極、ガス拡散層(GDL)内の水分移動速度分布を定量的に推定し、水の輸送現象を明らかにすることを目的としている。今年度は、主として層間界面における物質移動抵抗ならびに伝熱抵抗を検討することを目的とした。
英文要約In order to elucidate the water behavior in the polymer electrolyte fuel cell (PEFC) affected by the heat transfer, a chemical reaction engineering model of the PEFC is being developed. The measurement of PEM temperature, determination of kinetic parameters and numerical simulation by the nonisothermal model are being carried out. A lot of heat comparable to the electric power is emitted out of the PEFC. To attain the heat emission, a temperature gradient in the through-place direction should be created. However, it is usually difficult to measure temperature inside a thin polymer electrolyte membrane (PEM). In this study, temperature was measured with thin thermocouples (20 micrometers thick) inserted in the PEM made thick intentionally. The membranes were hot pressed with catalyst layers (0.5 mg-Pt/cm2) to form the MEA. A standard cell equipped with the MEA was operated at 80 oC with 200 cm3/min hydrogen and 100 cm3/min oxygen supply, and the temperature of the PEM was measured. By investigating the dependence on the gas diffusion layer (GDL) thickness, the heat transfer resistance was found at the interface between the layers comprising the cell. The interfacial resistance was dependant on the cell binding pressure. The resistance was found 27% of the overall heat transfer resistance at a binding pressure of 1.9 MPa. Two-dimensional temperature distribution was estimated by numerical simulation. Due to the poor heat conduction in the gas channel, the heat transfer resistance was increased to 1.31 times that of carbon paper. It is still not sufficient to explain the experimental results at low binding pressure. The contact resistance to heat transfer at the rib--GDL interface should exist. The interfacial resistance to water transport was also measured by investigating the effect of PEM thickness on the water permeation flux. The interfacial resistance was found around 8% of the overall water transport resistance.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る