成果報告書詳細
管理番号20100000000377
タイトル*平成21年度中間年報 新エネルギー技術研究開発 バイオマスエネルギー等高効率転換技術開発(先導技術開発) エネルギー植物の品種改良に係わる代謝情報と遺伝子発現情報に関する研究開発
公開日2010/6/2
報告書年度2009 - 2009
委託先名財団法人かずさディー・エヌ・エー研究所 独立行政法人理化学研究所 国立大学法人京都大学
プロジェクト番号P07015
部署名新エネルギー技術開発部 バイオマスグループ
和文要約和文要約等以下本編抜粋:
1. 研究開発の内容及び成果等
(1)ギガシークエンサーによるエネルギー植物の遺伝子発現情報の解析(理研・かずさ)
<理化学研究所> 2009 年度予算の殆どはギガシーケンサー関連に計上されていたため、当該課題を中心に遂行した。
<かずさDNA 研究所> エリアンサスでの遺伝子発現を次世代シークエンサーによって解析する
ために、RNA精製、cDNA ライブラリー作製、塩基配列解析に着手した。
(2)核磁気共鳴装置(NMR)によるエネルギー植物の難溶性物質の解析(理研)
前述のように2009 年度の予算はギガシーケンサーに殆ど計上されていたため、その解析に注力した。
(3)エネルギー植物のリグニンの解析(京大)
第二世代バイオエタノール生産の主要材料と期待されている草本系リグノセルロースについて、酵素糖化効率を大きく左右する細胞壁構造とりわけリグニンについての知見は乏しい。そこで、本研究開発では草本系エネルギー植物のリグニンの化学分析を行った。
(4)超精密質量分析装置によるエネルギー植物の可溶性代謝物の解析 (かずさ)
バイオディーゼルの原料として期待されるヤトロファ(Jatropha curcas, L.)と脂質を蓄積することが確認されている海洋性微細藻類4 種類、バイオエタノール原料てエリアンサス(Erianthus Ravenna L.)及びスイッチグラス(Panicum virgatum)5 品種(Alamo、Kanlow、Trailblazer、Cave-In-Rock、Blackwell)についてGC-TOF-MS による代謝物の網羅的分析を行った。これらの植物種に適した抽出条件の検討も併せて行った。得られた分析データについては、植物種、品種
(5)メタゲノム情報と遺伝子発現情報を統合データベースの構築(かずさ)
現時点で公開されているEST 情報の収集を行った。
英文要約New Energy Technology Development Project / High Efficiency Bioenergy Conversion Project, Development of Preparatory Basic Bioenergy Technologies
Research and Development of Genetic and Metabolic Information on Energy Producing Plants for Breeding Programs
Project Summary of FY 2009
 Many plant species have attracted attention as potential feedstocks for biofuel. However, the available genetic and metabolic information on most of these plants is, in general, limited. Few databases have been developed that provide both genetic and metabolic data on energy producing plants in an integrated manner.
 This research will involve analyzing genes and metabolites of energy producing plants such as Erianthus , switchgrass, jatropha and oil-producing algae in a comprehensive manner and then developing a database of the information obtained.
 Construction of Database on Energy Producing Plant Metabolites
 To obtain gene expression data of energy producing plants, Erianthus spp, Panicum virgatum, and Jatropha curcas, we searched PlantGDB (http://www.plantgdb.org/), and analyzed the data obtained. Using the gene expression data, we have started to construct a database, in which gene expression is represented on metabolic maps. To obtain metabolism data of these plants, we analyzed metabolites using gas chromatography Time-of-flight mass spectrometer (GC-TOF-MS). The metabolome data will be integrated into the database.
 Analysis of Gene Expressions and Low-solubility substances
 As collaborative work with DENSO Co. Ltd./Chuo University, we have chosen the oil-producing algae, Pseudorychosistis elipsodia, as the first target for a draft genome and gene expression analysis using the next generation DNA sequencer, Illumina GA-II. Draft genome size was estimated to be 56Mbp by genome DNA sequencing and following contig analysis. Furthermore, we performed comparative gene expression analysis upon nitrogen starvation/normal nutrient conditions, by construction of cDNA libraries for cDNA sequencing. From these contig analyses, over 1300 unique genes were annotated by alignment with the Clamydomonus genome, and a maximum of sixth order of expression level changes exhibited can be attributed to the tremendous amounts (> Gbp) of sequence data. Similar comparative transcriptome measurements using GA-II were performed for the second target, Jatropha, by collaborative work with NAIST/Ryukyu University.
 In addition to these gene expression analyses, we performed metabolic profiling of plant extraction processes for both soluble and insoluble metabolites using solution state and magic angle spinning NMR. Furthermore, we have investigated solubilization of low-solubility biomass such as lignin and hemicelluloses using ball-milling and a choice of adequate solvent systems. As a result, we have succeeded in obtaining nicely resolved 1H-13C correlation spectra of lignocelluloses samples.
 Analysis of Lignin of Energy Producing Plants
 Lignin is a major component of the secondary cell wall of vascular plants, and is an obstacle in the conversion of plant cell wall polysaccharides into biofuels. However, little is known about lignins of energy-producing plants. The nitrobenzene oxidation method is widely used for structural analysis of lignin. However, the conventional nitrobenzene oxidation method has several drawbacks, including the requirement for a large amount of sample material and the rather slow completion of the reaction process. In this fiscal year, we established a microscale, high-throughput, and highly reproducible nitrobenzene oxidation method. The method is useful for lignin analysis of transgenic energy-producing plants. In addition, we established a method for characterizing p-hydroxycinnamic acids, which also inhibit enzymatic saccharification of secondary cell walls of energy-producing plants.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る