成果報告書詳細
管理番号20100000001925
タイトル*平成21年度中間年報 水素製造・輸送・貯蔵システム等技術開発 次世代技術開発・フィージビリティスタディ等革新的な次世代技術の探索・有効性に関する研究開発 可視光応答性半導体を用いた光触媒および多孔質光電極による水分解水素製造の研究開発
公開日2011/6/29
報告書年度2009 - 2009
委託先名独立行政法人産業技術総合研究所
プロジェクト番号P08003
部署名燃料電池・水素技術開発部
和文要約和文要約等以下本編抜粋:1. 研究開発の内容及び成果等 <研究開発の内容> 太陽エネルギー利用の数少ない選択肢の一つとして、水を分解して水素と酸素を製造する「太陽光水素製造技術」は持続可能な水素社会実現のための理想的な技術である。本研究開発事業の目的としては、可視光応答性半導体を用いた光触媒及び多孔質光電極による水分解水素製造の研究開発に関して、太陽光による水分解水素製造の実用化のための基礎要素技術を開発するとともに、正確なコスト計算に必要な実験データを収集することである。
英文要約Title Study on hydrogen production over photocatalysts and photoelectrodes using visible light active semiconductors. (FY2008-FY2010) FY2009 Annual Report
"Solar hydrogen processing technology", that is, the water splitting into hydrogen and oxygen is an ideal technology, as one of the choices of the effective solar energy utilization, in order to achieve sustainable hydrogen society. The purposes of this research and development are to develop the basic element technology for the practical use of hydrogen production from sunlight and water based on photocatalysts and photoelectrodes using visible light active semiconductors, and to obtain various experimental data for the hydrogen cost estimation in detail. The realizability of a new cheaper hydrogen production system than the system that only combines the water electrolysis with the solar battery and than that uses hydrogen production from fossil energy is examined. Concretely, we found that carbonate ions in the aqueous electrolyte solution improved both the photocurrent and the stability of a porous BiVO4 semiconductor electrode used for water splitting under visible light up to 520 nm. The photocurrents in AHCO3 (A = Na and K) solutions at 1.23 V were approximately six times higher than that in Na2SO4 aqueous solution. The maximum incident photon-to-current efficiency (IPCE) was 45% at 420 nm without any surface modifications. In addition, a combinatorial approach has been carried out to systematically investigate visible-light responsiveness of Fe-Ti-X (X = Sr, Ba, Ta, In, Sm) and Fe-Zr-X (X = Sr, Si, Al, Zn, Ta, In, Sn, B, Y) oxides for photoelectrochemical water splitting. Moreover, we demonstrated that a surface modification of Cs is an excellent method to improve the activity for photocatalytic O2 evolution and Fe3+ reduction over WO3 under visible light irradiation. The surface-modified WO3 showed the highest solar energy conversion efficiency (0.3%) among all powdered photocatalyst systems reported previously. This result provides a promising route for the improvement of practical solar-energy utilization.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る