成果報告書詳細
管理番号20110000000528
タイトル*平成22年度中間年報 水素先端科学基礎研究事業 水素先端科学基礎研究 高圧水素ガス用ひずみゲージの開発とひずみゲージ箔材の電気抵抗に及ぼす水素の影響の解明
公開日2011/6/7
報告書年度2010 - 2010
委託先名株式会社共和電業
プロジェクト番号P06026
部署名新エネルギー部
和文要約和文要約等以下本編抜粋:1.研究開発の内容及び成果等 今まで、高圧水素ガス環境下での使用を目的とした応力測定用ひずみゲージは開発されていない。既製のひずみゲージでは、高圧水素ガス中で無負荷状態での電気抵抗変化が大きくなる難点が生じた。このため、高圧水素ガス中での材料試験、機器の応力測定の安定的な実施に障害をきしている。 本研究においては、高圧水素ガス中でのひずみゲージ抵抗変化の解明を行うためにひずみゲージ箔材の結晶構造解析並びに水素拡散速度と水素固容度の測定を行う。次に、ひずみゲージの高圧水素中での無負荷および負荷時の電気抵抗変化を測定する。 これより高圧水素中のひずみゲージの電気抵抗変化に及ぼす水素影響を評価し、ひずみゲージの電気抵抗変化が発生するメカニズムを解明し、高圧水素ガス用ひずみゲージを開発する。
英文要約 Title:Development of Strain Gage for High Pressure Hydrogen Gas and Resolution of Influence of Hydrogen upon the Resistance of the Metal Foil (FY2010-FY2012) FY2010 Annual Report
Until now, there is no strain gage for stress measurement in high-pressure hydrogen gas. The output of the commercial strain gage changes with time, just after the strain gage put in high-pressure hydrogen gas. Therefore, we can not conduct the strain measurement in high-pressure hydrogen gas using the commercial strain gage. In this research, the analysis of microstructure, measurement of hydrogen diffusion coefficients and solubility of metallic materials for strain gages are conducted to clarify the changes in outputs of strain gages under high-pressure hydrogen gas. The measurement of the electronic resistance of metallic materials for strain gages is also conducted with and without loading in high-pressure hydrogen gas. Based on the results obtained, we evaluate the effect of hydrogen and microstructure on the changes in electrical resistance of metallic materials for the strain gages. Finally we develop the new strain gage for high-pressure hydrogen gas. The results obtained in this year are summarized in the followings. (1) EBSD was used to analyze the microstructure. TDS was used to measure hydrogen diffusion coefficients and solubility. Cu-Ni and Ni-Cr had Face Centered Cubic (FCC) structure. Fe-Cr-Al had Body Centered Cubic (BCC) structure. Hydrogen diffusion coefficient of Fe-Cr-Al at 50°C was approximately 23 times larger than that of Cu-Ni. Hydrogen solubility of Cu-Ni was two orders of magnitude larger than that of Fe-Cr-Al. That is to say, Cu-Ni had slower hydrogen diffusion rate and larger hydrogen solubility than Fe-Cr-Al did. These results explained the difference in the change in output between Cu-Ni gage and Fe-Cr-Al gage. The output of Cu-Ni strain gage under high-pressure hydrogen gas change over longer period and the amount of change is larger than that of Fe-Cr-Al strain gage. (2) We attempted to make strain gages for high-pressure hydrogen gas using Fe-Cr-Al foils. We made 2 types of strain gages with different thickness of resistance elements (5 um and 15 um). (3) For changes in electrical resistance of strain gages under high-pressure hydrogen gas, we examined measurements with a KYOWA data logger. In addition, we selected 1-gage 3-wire system. It has a small influence on resistance change of a lead wire from a strain gage to data logger. For changes in electrical resistance of strain gages under high-pressure hydrogen gas, we examined the multi-channel auto measurement. The multi-channel auto measurement is a system of resistance measuring instruments that can measure low resistances with high stability. We selected 4-wire method. It has a small influence on resistance change of a lead wire from a strain gage to measuring instrument. (4) For evaluating the effect on hydrogen that influences electrical characteristics of strain gages, we made a test vessel that can withstand 120 MPa hydrogen gas. The test vessel has a sensing part with a strain gage installed to be deformed under high-pressure hydrogen gas.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る