成果報告書詳細
管理番号20110000000627
タイトル*平成22年度中間年報 ゼロエミッション石炭火力技術開発プロジェクト 革新的CO2回収型石炭ガス化技術開発(H22~H23) 
公開日2011/6/23
報告書年度2010 - 2010
委託先名電源開発株式会社
プロジェクト番号P10016
部署名環境部
和文要約和文要約等以下本編抜粋:1. 研究開発の内容及び成果等 革新的CO2回収型石炭ガス化技術開発は、ガスタービン入口温度1,500℃超級の次期IGCCを念頭におき、エネルギーロスを極力低減するCO2分離回収を目指すものである。ガスタービン効率向上のためにはガスタービン入口ガスを高温・高圧化する必要があるが、これに伴う系統圧力上昇に対応した最適なCO2分離回収技術が求められる。本研究開発にて実証を目指す物理吸収液(セレクソール)によるCO2分離回収技術は、系統圧力上昇に応じてCO2溶解度が比例的に増大することから、圧力の高いシステムにおいて吸収液再生エネルギーや吸収液循環動力の面で優位性を持つことが期待されている。現状、石炭ガス化発電プラントにおいて物理吸収液によるCO2分離回収を実施している事例はなく、従って本研究開発において同技術の石炭ガス化システムへの適用性を検証し、更には発電効率への影響を最小化するCO2分離回収条件見極めを行うことは、次期IGCC+CCSシステムの実用化および普及加速化に向けて極めて重要なステップとなるものである。本技術開発においては、既設のEAGLE炉(酸素吹一室二段旋回流型噴流床ガス化炉)を利用し、新たに「物理吸収法によるCO2分離回収設備(処理ガス量1,000m3N/h規模)」を設計・建設し、運転研究を行うものである。
英文要約Title: Development of Zero-emission Coal-Fired Power Generation, Interim Annual Report on R&D of Coal Gasification Technology with Innovative CO2 Capture for Fiscal Years 2010-2011
Looking towards the development of next-generation IGCC in which the gas turbine inlet temperature is higher than 1,500℃, the project aims at developing CO2 capture with low energy consumption. In order to increase the gas turbine efficiency, it is necessary to increase the temperature and pressure of the turbine inlet gas, and an optimal CO2 capture matched to the increase in system pressure is therefore required. Selexol process is used in the project as physical CO2 capture. Because this technology shows the increase in CO2 solubility in proportion to the increase in system pressure, it is expected to reduce solvent regeneration energy in a high-pressure system. At present, there are no examples of physical CO2 capture in coal gasification plants. Therefore the study of the applicability of this technology to coal gasification systems is extremely important to accelerate the next-generation IGCC with CCS. Using the existing EAGLE gasifier (a one-chamber, two-stage swirling oxygen-blown entrained-bed coal gasifier), the project will conduct the operations of physical CO2 capture facilities (syngas capacity: 1,000 m3N/h). In fiscal 2010, we completed the basic design of physical CO2 capture facilities, modified the existing EAGLE facilities, and conducted a survey of new CO2 capture technologies. The results are described below. (1) Basic design of physical CO2 capture facilities: We completed the basic design of the CO shift facility and the Selexol facility, and decided on the process flow diagram and the basic specifications of the equipment. In addition, we determined the heat and mass balance of the system at design condition. The balance study indicates that much steam injection in the CO shift facility brings stable operation but it reduces generating efficiency. In contrast, less steam injection causes catalyst degradation due to carbon deposition. Thus it is important to clarify the relationship between steam injection and catalyst degradation. (2) Modification of existing EAGLE facilities: In order to enable stable supply of syngas to the CO2 capture facilities, we modified the char recycling system as part of various adjustments and modifications to the EAGLE plant. In addition, we conducted some maintenance work that would contribute to the stable operation and increased reliability of the plant. (3) Survey of new CO2 capture technologies: In the area of CCS systems, the development of technologies offering low energy consumption is proceeding. We conducted a survey of the following CO2 capture technologies; a) Chemical CO2 absorption with heated flash regeneration, b) Chemical CO2 absorption with high-pressure regeneration, c) CO2 capture using hydrate, d) H2/CO2 capture system using a hydrogen separation membrane, e) IGCC with CO2 circulation.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る