成果報告書詳細
管理番号20110000000930
タイトル*平成22年度中間年報 新エネルギーベンチャー技術革新事業/新エネルギーベンチャー技術革新事業(燃料電池・蓄電池)/リチウムイオン電池用酸化物負極材料の技術開発
公開日2011/6/23
報告書年度2010 - 2010
委託先名株式会社ナノリサーチ 国立大学法人福井大学
プロジェクト番号P10020
部署名技術開発推進部
和文要約和文要約等以下本編抜粋:1. 研究開発の内容及び成果等
実施内容
研究開発項目【1】「ラボ試験装置の性能把握に関する研究開発」
平成23 年2 月までに、ラボ試験装置を用いて、チタン酸リチウムの低導電性およびナノサイズ化の課題(a)、(b)についての研究開発を行い、その結果を基に、平成23 年3 月中旬までに製造装置の基本仕様を確立する。具体的には、下記の内容で先行して検討したことを基に、ラボ試験装置によりチタン酸リチウムを製造し、その特性評価を行い、得られた結果をフィードバックしながら、最終的に装置構造の
改良および合成条件の最適化を図ることで解決する。
(a)低導電性の課題解決における研究開発
「目標」
従来の研究では、リン酸鉄リチウムにナノカーボン複合技術を適用すると導電率が10-6S/cm まで向上し、高速充放電性能が確保できるという結果が得られていることから、ナノカーボン複合技術により、チタン酸リチウム(導電率10-9S/cm)粒子中に炭素をナノレベルで複合化し、リチウムイオンのスムーズな伝導パスを形成させることにより導電率を向上させる。
達成目標 : 導電率を10-5S/cm
英文要約Recently, the large scale lithium ion batteries (LiB) are expected as the energy storage for electric vehicles, hybrid electric vehicles and energy storage applications. However, some accidents such as thermal runaways have occurred. Therefore, safety concerns have become the main focus for research and development of the large scale LiB. Furthermore, the high rate performance of LiB has been required. Oxide anode material is expected because of better safety. Spinel lithium titanate (LTO) has many advantages compared to the currently used graphite as anode material. It is a zero strain lithium insertion material in the charge/discharge process. It does not form a solid electrolyte interface based on solvent reduction. These advantages will be a favorable property for the high rate performance. However, the low conductivity of LTO led to initial capacity loss and poor rate performance. The particle size, morphology and electronic conductivity are among the most important factors to the high rate performance. The aim of this work is development of Spinel lithium titanate/carbon nanocomposite (LTO/C) nanoparticles as oxide anode materials and is to start a business of oxide anode materials. In this work, spray pyrolysis technique was used in order to add conductive materials such as carbon to LTO. In addition, LTO/C nanoparticles were prepared by a powder production apparatus using the pulse engine system in which the spray pyrolysis was performed by the pulse impact wave technique. In this year, the powder characteristics of LTO/C nanoparticles and the effect of carbon doping on electrochemical properties of them were investigated.
LTO/C nanoparticles were successfully prepared by spray pyrolysis using the pulse impact wave technique. X-ray diffraction (XRD) analysis showed that the diffraction patterns of all sample were good agreement with spinel phase. Scanning electron microscope (SEM) observation showed that LTO/C nanoparticles were irregular shaped particles. The average size of LTO/C nanoparticles was 50 nm. Thermogravimetry/Differential thermal analysis (DTA-TG) revealed that the carbon content of LTO/C nanoparticles derived from lactic acid was 10 wt%. 2032 type coin cell was used to examine the electrochemical properties of LTO/C anode. The rechargeable capacity of LTO/C anode derived from lactic acid was 170 mAh/g at 1 C. The initial discharge capacity of LTO/C anode was also 150 mAh/g at 10 C. The addition of carbon and the particle size with nano scale of LTO/C led to the high rate performance. The rechargeable cycle test was carried out up to 500 cycles. It was clear that LTO/C anode had the excellent cycle stability. Furthermore, we researched the market and the marketing way of anode materials and formulated the business scheme. We will supply LTO/C for the venture of lithium ion cell since 2014.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る